• 제목/요약/키워드: high Q inductors

검색결과 48건 처리시간 0.027초

RFIC를 위한 실리콘 기판에서의 고품질 본드와이어 인덕터 구현 (Implementation of High-Q Bondwire Inductors on Silicon RFIC)

  • 최근영;송병욱;김성진;이해영
    • 대한전자공학회논문지TC
    • /
    • 제39권12호
    • /
    • pp.559-565
    • /
    • 2002
  • 현재 RFIC를 위해 실리콘 기판상에 구현되는 인덕터의 Q 값은 12 이하로 알려져있기 때문에, 고성능 회로설계를 위해서는 더욱 높은 Q 값을 갖는 인덕터의 구현이 필수적이다. 본 논문에서는 본드와이어를 이용하여 높은 Q 값을 가지는 두 개의 인덕터를 제안하였고, 동일한 인덕터에 PGS를 적용하여 총 4가지 형태의 인덕터를 구현하였다. 제안된 본드와이어 인덕터는 일반적인 금속선로보다 넓은 단면적 때문에 상대적으로 작은 도체 손실을 갖고, 인덕터의 상당부분이 공기 중에 위치하므로 기생 캐패시턴스 성분을 줄일 수 있다. 해석 및 측정결과 1.5 GHz 에서 기존의 나선형 인덕터보다 상당히 개선된 15이상의 Q 값을 가짐을 확인하였다. 또한 자동 본딩 머신을 사용하여 구현하기 때문에, 동일한 형태의 인덕터를 반복적으로 쉽게 만들 수 있다.

High-Q MEMS Spiral Inductor를 이용한 RF VCO (RF VCO with High-Q MEMS-based Spiral Inductor)

  • 김태호;김경만;서희원;황인석;김삼동
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2003년도 하계종합학술대회 논문집 II
    • /
    • pp.987-990
    • /
    • 2003
  • This paper presents a cross-coupled RF VCO with high-Q MEMS-based spiral inductors. Since the use of high-Q inductors is critical to VCO design, MEMS-based spiral inductors with the Q-factor of nearly 22 are used for the RF VCO with an active cascode current source. The RF VCO circuits including spiral inductors have been designed and simulated in GaAs MMIC-MEMS process. The simulation results of the VCO circuits showed the phase noise of -180dBc/Hz at an offset frequency of 500KHz. The RF VCO circuit simulatinon used 2mA DC current and 3.3V supply.

  • PDF

고성능의 초소형 RF 칩 인덕터 개발 (Development of High-Performance Ultra-small Size RF Chip Inductors)

  • 윤의중;천채일
    • 한국전기전자재료학회논문지
    • /
    • 제17권3호
    • /
    • pp.340-347
    • /
    • 2004
  • Ultra-small size, high-performance, solenoid-type RF chip inductors utilizing low-loss A1$_2$O$_3$ core materials were investigated. The dimensions of the RF chip inductors fabricated were 1.0mm${\times}$0.5mm${\times}$0.5mm and copper coils were used. The materials (96% A1$_2$O$_3$) and shape (I-type) of the core, the diameters (40${\mu}{\textrm}{m}$) and position (middle) of the coil, and the lengths (0.35mm) of solenoid were determined by a high-frequency structure simulator (HFSS) to maximize the performance of the inductors. The high-frequency characteristics of the inductance (L) and quality-factor (Q) of the developed inductors were measured using a RF impedance/material analyzer (E4991A with E16197A test fixture). The developed inductors exhibit an inductance of 11 to 11.3nH and a qualify factor of 22.3 to 65.7 over the frequency ranges of 250 MHz to 1.7 GHz, and show results comparable to those measured for the inductors prepared by Coilcraft$^{TM}$. The simulated data described the high-frequency data of the L and Q of the fabricated inductors well.

극소형 솔레노이드 RF 칩 인덕터의 설계 및 제작에 대한 연구 (A Study for Optimum Design and Fabrication of Microscale Solenoid RF Chip Inductors)

  • 윤의중;정영창
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제52권11호
    • /
    • pp.501-507
    • /
    • 2003
  • In this study, microscale, high-performance, solenoid-type RF chip inductors were investigated. The size of the RF chip inductors fabricated in this work was 1.0${\times}$0.5${\times}$0.5㎣. 96% $Al_2$ $O_3$and I-type were used as the material and shape of the core, respectively. The copper (Cu) wire with 6 turns was employed as the coils. The diameter (40${\mu}{\textrm}{m}$) and position (middle) of the coil and the length (0.35mm) of solenoid were determined by a high-frequency structure simulator (HFSS) to maximize the performance of the inductors. High frequency characteristics of the inductance (L) and quality-factor (Q) of developed inductors were measured using an RF Impedance/Material Analyzer (HP4291B with HP16193A test fixture). The inductors developed have inductances of 10.8nH and quality factors of 25.2 to 50 over the frequency ranges of 250MHz to l GHz, and show results comparable to those measured for the inductors prepared by CoilCraf $t^{Tm}$ . The simulated data predicted the high-frequency data of the L and Q of the inductors developed well.l.

무선통신시스템을 위한 극소형 RF 칩 인덕터의 개발 (Development of Microscale RF Chip Inductors for Wireless Communication Systems)

  • 윤의중;김재욱;정영창;홍철호
    • 대한전자공학회논문지SD
    • /
    • 제40권10호
    • /
    • pp.17-23
    • /
    • 2003
  • 본 논문에서는 고성능의 극소형, 솔레노이드 형태의 RF 칩 인덕터를 연구하였다. 제작된 RF 칩 인덕터의 크기는 1.0×0.5×0.5㎣ 이었다. 코아의 재료 (96% Al₂O₃)와 모양 (I-type)은 인덕터의 성능을 극대화시키도록 Maxwell three-dimensional field simulator를 이용하여 결정되었다. 40㎛의 직경을 가진 가는 구리(Cu)도선을 코일로 사용하였다. 개발된 인덕터의 인덕턴스 (L), 품질계수 (Q), 그리고 커패시턴스 (C) 들에 대한 고주파 특성은 RF 임피던스/재료 분석기 (HP16193A 시험 fixture가 장착된 HP4291B)를 사용하여 측정되었다. 개발된 인덕터들은 230MHz - 1 GHz의 주파수 영역에서 11 - 39 nH 범위의 인덕턴스 값과 28 - 50 범위의 품질계수 값을 가지는데 이는 전 세계적으로 가장 좋은 칩 인덕터 업체 중의 하나인 CoilCraft/sup Tm/에 의해 생산된 인덕터들의 특성과 유사한 결과를 나타내고 있다. 시뮬레이션 데이터는 개발된 인덕터의 L, Q, C 등의 고주파 특성을 잘 예측하고 있다.

GHz 대역을 위한 1005 RF 칩 인덕터의 최적 구조 설계 (The Optimum Structure Design of 1005 RF Chip Inductors for GHz Band)

  • 김재욱;유창근
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2005년도 추계종합학술대회
    • /
    • pp.785-788
    • /
    • 2005
  • In this study, micro-scale, high-performance, solenoid-type RF chip inductors were investigated. The size of the RF chip inductors fabricated in this work was $1.0{\times}0.5{\times}0.5mm^3$ The material and shape of the core were 96% $Al_2O_3$ and I-type. The material and number of turn of coil were copper (Cu) and 6. The diameter ($40{\mu}m$) of coil and length (0.35mm) of solenoid were determined by a Maxwell three-dimensional field simulator to maximize the performance of the inductors. High frequency characteristics of the inductance (L) and quality-factor (Q) of developed inductors were measured using an RF Impedance/Material Analyzer (HP4291B with HP16193A test fixture). The inductors developed have inductances of 10.8nH and quality factors of 25.2 at 250MHz, and show results comparable to those measured for the inductors prepared by CoilCraftTm that is one of the best chip inductor company in the world. The simulated data predicted the high-frequency data of the Land Q of the inductors developed well.

  • PDF

Solenoid 형태의 초소형 SMD RF 칩 인덕터에 대한 주파수 특성 (Frequency Characteristics for Micro-scale SMD RE Chip Inductors of Solenoid-Type)

  • 김재욱
    • 한국산학기술학회논문지
    • /
    • 제8권3호
    • /
    • pp.454-459
    • /
    • 2007
  • 본 논문에서는 비정질 $Al_2O_3$ 코아 재료를 응용한 단순 solenoid 형태의 소형 고성능 RF 칩 인덕터를 연구하였다. 인덕터 크기는 $0.86{\times}0.46{\times}0.45mm^3$이고, $27{\mu}m$ 직경의 Cu를 코일로 사용하였다. RF 칩 인덕터의 인덕턴스(L), 양호 인자(Q), 임피던스(Z), 커패시턴스(C)와 등가회로 파라미터 등의 주파수 특성은 RF impedance/Material Analyzer (HP16193A test fixture가 장착된 HP4291B)로 측정되었다. $9{\sim}12$회의 권선수를 가진 RF 칩 인덕터들의 인덕턴스 값은 $21{\sim}34nH$ 범위를 가진다. 이들의 자기공진주파수(SRF)는 $5.7{\sim}3.7GHz$ 영역을 나타낸다. 또한 자기공진주파수가 증가함에 따라 인덕턴스 값이 감소하는 경향을 보이고 있다. 인덕터의 SRF는 인덕턴스가 증가함에 따라 감소하며, Q의 값은 $900MHz{\sim}1.7GHz$ 주파수 범위에서 최대 $38{\sim}49$까지 얻어졌다.

  • PDF

솔레노이드 형태의 RF 칩 인덕터에 대한 연구 (A Study for Solenoid-Type RF Chip Inductors)

  • 김재욱;윤의중;정여창;홍철호
    • 한국전기전자재료학회논문지
    • /
    • 제13권10호
    • /
    • pp.840-846
    • /
    • 2000
  • In this work, small-size, high-performance solenoid-type RF chip inductors utilizing a low-loss Al$_2$O$_3$core material were investigated. The size of the chip inductors fabricated in this work were 15$\times$10$\times$0.7㎣, 2.1$\times$1.5$\times$10㎣, and 2.4$\times$2.0$\times$1.4㎣ and copper (Cu) wire with 40 ㎛ diameter was used as the coils. High frequency characteristics of the inductance, quality factor, and impedance of developed inductors were measured suing an RF Impedance/Material Analyzer (HP4291B with HP16193A test fixture). It was observed that the developed inductors with the number of turns of 7 have the inductance of 33 to 100nH and exhibit the self-resonant frequency (SRF) of .26 to 1.1 GHz. The SRF of inductors decreases with increasing the inductance and the inductors have the quality factor of 60 to 80 in the frequency range of 300 MHz to 1.1 GHz. In this study, small-size solenoid-type RF chip inductors with high inductance and high quality factor were fabricated successfully. It is suggested that the thin film-type inductor is necessary to fabricate the smaller size inductors at the expence of inductance and quality factor values.

  • PDF

DC-DC Converter용 자성박막 인덕터 설계에 관한 연구 (A Study on Design of Magnetic Thin Film Inductors for DC-DC Converter Applications)

  • 윤의중;김좌연;박노경;김상기;김종대
    • 한국전기전자재료학회논문지
    • /
    • 제14권1호
    • /
    • pp.74-83
    • /
    • 2001
  • In this study, the optimum structure of a magnetic thin film inductor was designed for application of DC-DC converters. The Ni$\sub$81/Fe$\sub$19/ (at%) alloy was selected as a high-frequency($\geq$MHz) magnetic thin film magnetron sputtering system. As-deposited NiFe thin films show similar magnetic properties compared to bulk NiFe alloys, indicating that they have a good film quality. The optimum design of dolenoid-type magnetic thin film inductors was performed utilizing a Maxwell computer simulator (Ansoftt HFSS V7.0 for PC) and parameters obtained from the magnetic properties of magnetic core materials selected. The high-frequency characteristics of the inductance(L) and quality factor(Q) obtained for the designed inductors through simulation agreed well with those obtained by theoretical calculations, confirming that the simulated result is realistic. The optimum structure of high-performance (Q$\geq$60, L = 1${\mu}$H, efficiency $\geq$90%), high-frequency ($\geq$5MHz), and solenoid-type magnetic thin film inductors was designed successfully.

  • PDF

A Study on Fabrication of Magnetic Thin Film Inductors for DC-DC Converter

  • Lee, Young-Ae;Kim, Sang-Gi;Do, Seung-Woo;Lee, Yong-Hyun
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2009년도 제38회 동계학술대회 초록집
    • /
    • pp.225-225
    • /
    • 2010
  • In this study, the optimum structure of a magnetic thin film inductor was designed for application of DC-DC converters. The $Ni_{81}Fe_{19}$ (at%) alloy was selected as a high-frequency($\geq$ MHz) magnetic thin film core material and deposited on various substrates (bare Si, $SiO_2$ coated Si) using a high vacuum RF magnetron sputtering system. As-deposited NiFe thin films show similar magnetic properties compared to bulk NiFe alloys, indicating that they have a good film quality. The optimum design of solenoid-type magnetic thin film inductors was performed utilizing a Maxwell computer simulator (Ansoft HFSS V7.0 for PC) and parameters obtained from the magnetic properties of magnetic core materials selected. The high-frequency characteristics of the inductance(L) and quality factor(Q) obtained for the designed inductors through simulation agreed well with those obtained by theoretical calculations, confirming that the simulated result is realistic. The optimum structure of high-performance ($Q{\geq}60$, $L\;=\;1{\mu}H$, efficiency${\geq}90%$), high-frequency (${\geq}5MHz$), and solenoid-type magnetic thin film inductors was designed successfully.

  • PDF