• Title/Summary/Keyword: high K

Search Result 125,621, Processing Time 0.105 seconds

Prediction of downburst-induced wind pressure coefficients on high-rise building surfaces using BP neural network

  • Fang, Zhiyuan;Wang, Zhisong;Li, Zhengliang
    • Wind and Structures
    • /
    • v.30 no.3
    • /
    • pp.289-298
    • /
    • 2020
  • Gusts generated by downburst have caused a great variety of structural damages in many regions around the world. It is of great significance to accurately evaluate the downburst-induced wind load on high-rise building for the wind resistance design. The main objective of this paper is to propose a computational modeling approach which can satisfactorily predict the mean and fluctuating wind pressure coefficients induced by downburst on high-rise building surfaces. In this study, using an impinging jet to simulate downburst-like wind, and simultaneous pressure measurements are obtained on a high-rise building model at different radial locations. The model test data are used as the database for developing back propagation neural network (BPNN) models. Comparisons between the BPNN prediction results and those from impinging jet test demonstrate that the BPNN-based method can satisfactorily and efficiently predict the downburst-induced wind pressure coefficients on single and overall surfaces of high-rise building at various radial locations.

A study on the eddy current losses on the high-Tc superconducting power cable system

  • Song M.K.;Lee S.J.;Jang H.M.;Sim K.D.;Cho J.W.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.7 no.4
    • /
    • pp.32-36
    • /
    • 2005
  • The structure of a high-Tc superconducting power cable system is composed of these parts; (from the outer section) a liquid nitrogen cryostat, a vacuum cryostat, multi-layer high-Tc superconducting cable cores and a stabilizer and both cryostats during the stable operating period of the high-Tc superconducting power cable system are calculated by the numerical method. And the optimal conditions of the stabilizer and both cryostats, that minimize the eddy current losses, are derived from the analyzed results. The optimal results can be applied to the design and manufacture of the high-Tc superconducting power cable system.

A Comparison of Middle and High School Students' Conceptual Understanding in Stoichiometry and Gas State (화학양론과 기체 상태에 대한 중.고등학생의 개념 이해도 비교)

  • Noh, Tae-Hee;Lim, Hee-Jun;Woo, Kyu-Whan
    • Journal of The Korean Association For Science Education
    • /
    • v.15 no.4
    • /
    • pp.437-451
    • /
    • 1995
  • Middle and high school students' conceptual understanding about stoichiometry, gas laws, and diffusion was compared with essay type test and multiple choice test. Whereas achievement of high school students was higher in stoichiometry, that of middle school students who were expected to go to high schools was higher in gas laws and diffusion. When students' achievement was compared to that of American college students, Korean students' achievement was higher in stoichiometry and was similar in gas laws. These results indicate that algorithmic problem solving is more emphasized than conceptual understanding in high schools and that quantitative aspects focused in chemistry education are not helpful in concept understanding. Nevertheless relatively smaller difference between concept understanding and algorithmic problem solving for high school students in this study seems to be from concept learning in middle schools.

  • PDF

Self-activated Graphene Gas Sensors: A Mini Review

  • Kim, Taehoon;Eom, Tae Hoon;Jang, Ho Won
    • Journal of Sensor Science and Technology
    • /
    • v.29 no.4
    • /
    • pp.220-226
    • /
    • 2020
  • Graphene has been widely considered a promising candidate for high-quality chemical sensors, owing to its outstanding characteristics, such as sensitive gas adsorption at room temperature, high conductivity, high flexibility, and high transparency. However, the main drawback of a graphene-based gas sensor is the necessity for external heaters due to its slow response, incomplete recovery, and low selectivity at room temperature. Conventional heating devices have limitations such as large volume, thermal safety issues, and high power consumption. Moreover, metal-based heating systems cannot be applied to transparent and flexible devices. Thus, to solve this problem, a method of supplying the thermal energy necessary for gas sensing via the self-heating of graphene by utilizing its high carrier mobility has been studied. Herein, we provide a brief review of recent studies on self-activated graphene-based gas sensors. This review also describes various strategies for the self-activation of graphene sensors and the enhancement of their sensing properties.

Introduction of High Resolution Spectrograph by using Optical Freauency Comb.

  • Han, In-Woo;Kim, Kang-Min;Yoon, Tai-Hyun
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.35 no.1
    • /
    • pp.36.1-36.1
    • /
    • 2010
  • OFC (Optical Frequency Comb) is an optical spectrum which consists of equidistant lines in frequency space. OFC can thus be used as an optical ruler. Since it was demonstrated in late 1990s, it is revolutionizing many fields in frequency metrology such as the measurement of absolute optical frequencies, the measure ratios of optical frequencies with extremely high precision. It is also used in high-precision spectroscopy. In astronomy, OFC can be used as a very accurate and stable wavelength standard for a high resolution spectrograph to measure the radial velocity of celestial bodies with extremely high accuracy of about several tens cm/s. In our presentation, we will introduce some basic concepts of OFC and some issues to use it in astronomical spectrograph. We will also present our plan to develop a high resolution spectrograph with OFC.

  • PDF

A Study on the Influence of Extreme Heat on Daily Mortality (폭염이 일사망자수에 미치는 영향에 관한 연구)

  • Park, Jong-Kil;Jung, Woo-Sik;Kim, Eun-Byul
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.24 no.5
    • /
    • pp.523-537
    • /
    • 2008
  • In Korea, the global warming leads to more frequent high temperature region. increasing the need for research into physical damage caused by high temperature. We therefore analyzed the differences of mortality, caused by extreme heat, among gender and age. We also examined the trend of mortality from high temperature-sensitive diseases. Women are more affected by exposure to high temperature than are men; People over 65 years old have higher mortality rate (1.5 times) than under 65. As for high temperature-related diseases, cerebrovascular disease was the number one cause of death, and chronic lower respiratory disease and cardiovascular disease followed.

A Three-Phase AC-DC High Step-up Converter for Microscale Wind-power Generation Systems

  • Yang, Lung-Sheng;Lin, Chia-Ching;Chang, En-Chih
    • Journal of Power Electronics
    • /
    • v.16 no.5
    • /
    • pp.1861-1868
    • /
    • 2016
  • In this paper, a three-phase AC-DC high step-up converter is developed for application to microscale wind-power generation systems. Such an AC-DC boost converter prossessess the property of the single-switch high step-up DC-DC structure. For power factor correction, the advanced half-stage converter is operated under the discontinuous conduction mode (DCM). Simulatanously, to achieve a high step-up voltage gain, the back half-stage functions in the continuous conduction mode (CCM). A high voltage gain can be obtained by use of an output-capacitor mass and a coupled inductor. Compared to the output voltage, the voltage stress is decreased on the switch. To lessen the conducting losses, a low rated voltage and small conductive resistance MOSFETs are adopted. In addition, the coupled inductor retrieves the leakage-inductor energy. The operation principle and steady-state behavior are analyzed, and a prototype hardware circuit is realized to verify the performance of the proposed converter.

A Cooled Deformable Bimorph Mirror for a High Power Laser

  • Lee Jun-Ho;Lee Young-Cheol;Kang Eung-Cheol
    • Journal of the Optical Society of Korea
    • /
    • v.10 no.2
    • /
    • pp.57-62
    • /
    • 2006
  • Adaptive optics (AO) has been applied in various fields including astronomy, ophthalmology and high power laser systems. An adaptive optics system for a high power laser is not significantly different from other AO systems in the point of configuration except that high energy absorbed by the deformable mirror distorts the deformable mirror surface and so degrades system performance. Currently we are researching a bimorph deformable mirror for beam cleaning of a high power class laser. The bimorph mirror was considered to have 99% reflective coating and 1% absorption. So this paper first presents the temperature profiles and corresponding thermal distortions of the bimorph mirror faceplate when the mirror is under a high power lasing for 10 seconds. The analysis was accomplished by the use of finite difference and finite element computer programs to generate the element arrays, calculate the temperature profiles, and determine the structural deformations. Then this paper proposes an 'embedded wafer' type water-cooling system with derived cooling parameters.

Experimental Study on the Determination of Optimum Thickness of RC Deck Slabs by 100, 120 MPa High-Strength Concrete (100, 120 MPa급 고강도 콘크리트 적용 바닥판 적정두께 결정을 위한 실험적 연구)

  • Bae, Jae-Hyun;Hwang, Hoon-Hee;Park, Sung-Yong
    • Journal of the Korean Society of Safety
    • /
    • v.33 no.4
    • /
    • pp.38-45
    • /
    • 2018
  • Bridges are structures where safety must be ensured. Generally, the destruction mechanism of bridge deck shows punching shear. Lately, the high-strength concrete is often used to increase the lifespan of bridges. The benefits of using the high-strength concrete are that it increases the durability and strength. On the contrary, it reduces the cross-section of the bridges. This study suggested the optimal thickness of bridge deck with application of high-strength concrete and the study evaluated its structural performance experimentally. The evaluation result shows that 180 mm and 190 mm of thickness are optimal for 100 MPa and 120 MPa high-strength concrete bridge deck respectively.

An Optimal Design of High Space Factor BLDC Motor by Nonlinear Finite Element Method and Optimization Method (비선형 유한요소법과 최적화 기법을 이용한 고점적률 BLDC의 최적설계)

  • Oh, Seung-Kyun;Chung, Tae-Kyung;Jin, Yong-Sun
    • Proceedings of the KIEE Conference
    • /
    • 1999.07a
    • /
    • pp.388-390
    • /
    • 1999
  • This paper discusses an optimal design of high space factor BLDC motor. Because of high space factor BLDC, Nonliear finite element method considering saturation of outer-rotor is used. For optimal design, a new niching genetic algorithm, namely "Restricted Competitions Selection" is used. This algorithm constructs an objective function using only the most important criteria and provides a designer with a set of solution rather than one solution. To verify its effectiveness, the new niching genetic algorithm is applied to an actual high space factor BLDC motor We show that a new designed high space factor BLDC motor is superior to the actual high space factor BLDC.

  • PDF