DOI QR코드

DOI QR Code

A Cooled Deformable Bimorph Mirror for a High Power Laser

  • Received : 2006.04.18
  • Published : 2006.06.01

Abstract

Adaptive optics (AO) has been applied in various fields including astronomy, ophthalmology and high power laser systems. An adaptive optics system for a high power laser is not significantly different from other AO systems in the point of configuration except that high energy absorbed by the deformable mirror distorts the deformable mirror surface and so degrades system performance. Currently we are researching a bimorph deformable mirror for beam cleaning of a high power class laser. The bimorph mirror was considered to have 99% reflective coating and 1% absorption. So this paper first presents the temperature profiles and corresponding thermal distortions of the bimorph mirror faceplate when the mirror is under a high power lasing for 10 seconds. The analysis was accomplished by the use of finite difference and finite element computer programs to generate the element arrays, calculate the temperature profiles, and determine the structural deformations. Then this paper proposes an 'embedded wafer' type water-cooling system with derived cooling parameters.

Keywords

References

  1. J. M. Beckers, 'Adaptive Optics for Astronomy: Prin-ciples, Performance and Applications,' Annual Review of Astronomy and Astrophysics, vol. 31, pp. 13-22, 1993 https://doi.org/10.1146/annurev.aa.31.090193.000305
  2. A. V. Kudryashov and V. V. Samarkin, 'Control of high power $C0_2$ laser beam by adaptive optical elements,' Optics Communication, vol. 118, pp. 317-322, 1995 https://doi.org/10.1016/0030-4018(95)00218-W
  3. J. L. Gargasson, M. Glanc, and P. Lena, 'Retinal Imaging with adaptive optics,' C.R. Acad. Sci. Paris., t.2, Serie IV, pp. 1131-1138, 2001 https://doi.org/10.1016/S1296-2147(01)01261-6
  4. S. Arnon and N. S. Kopeika, 'Adaptive optical transmitter and receiver for space communication through thin clouds,' Applied Optics, vol. 36, no. 9, pp. 1987-1993, 1997 https://doi.org/10.1364/AO.36.001987
  5. Z. Kam, B. Hanser, M. G. L. Gustafsson, D. A. Agard, and J. W. Sedat, 'Computational adaptive optics for live three-dimensional biological imaging,' PNAS, vol. 98, no. 7, pp. 3790-3795, 2001 https://doi.org/10.1073/pnas.071275698
  6. M. L. Holohan and J. C. Dainty, 'Low-order adaptive optics: a possible use in underwater imaging?,' Optics & Laser Technology, vol. 29, no. 1, pp. 51-55, 1997 https://doi.org/10.1016/S0030-3992(96)00051-5
  7. E. J. Szetela and A. I. Chalfant, 'Thermal distortion of mirrors,' Thermochimica Acta, vol. 26, pp. 191-197, 1978 https://doi.org/10.1016/0040-6031(78)80067-7
  8. C. A. Klein, 'High-Power CW Laser Windows: Edge-Cooled or Face-Cooled?,' Proc. SPIE, vol. 1739, pp. 230-253, 1992 https://doi.org/10.1117/12.140504
  9. M. A. Ealey and A. Wellman, 'Cooled ISOFLOW laser mirrors,' Proc. SPIE, vol. 1739, pp. 374-382, 1993 https://doi.org/10.1117/12.140500
  10. Y. Li, A. M. Khounsary, J. Maser, and S. Nair, 'Cooled mirror for a double-undulator beamline,' Proc. SPIE, vol. 5193, pp. 204-210, 2004 https://doi.org/10.1117/12.524908
  11. A. G. Safronov, 'Controllable bimorph optics based on piezoelectric structures,' Ph. D. thesis, General Physics Institute of Russian Academy of Sciences, 1995
  12. A. G. Safronov, B. S. Vinevitch, and V. M. Zharikov, 'Controllable curvature mirrors for laser techniques', Proc. SPIE, vol. 3686, pp. 16-25, 1999 https://doi.org/10.1117/12.335857
  13. M.A.Vorontsov, G.M.Izakson, A.V.Kudryashov, G.A. Kosheleva, S.I.Nazarkin, Yu.F.Suslov, and V.I.Shmalgauzen, 'Adaptive cooled mirror for the resonator of an industrial laser,' Sov. J. of Quantum Electron., vol. 15, p. 888, 1985 https://doi.org/10.1070/QE1985v015n07ABEH007274
  14. J.H. Lee, Y.C. Lee, and H. J. Cheon, 'A circular bimorph deformable mirror for circular/annulus/square laser beam compensation,' J. Opt. Soc. Korea, vol. 10, no. 1, pp. 23-27, 2006 https://doi.org/10.3807/JOSK.2006.10.1.023
  15. Jun Ho Lee, Tae-Kyung Uhm, and Sung Kie Young, 'First-Order Analysis of Thin-Plate Deformable Mirrors,' J. Kor. Phys. Soc., vol. 44, no. 6, pp. 1412-1416, 2004
  16. F. Incropera and D. P. De Witt, Introduction to Heat Transfer, John Wiley & Sons, 2nd Ed., 1990

Cited by

  1. A self-correction method for deformable mirror with thermal deformation vol.145, 2017, https://doi.org/10.1016/j.ijleo.2017.08.006
  2. Development of a unimorph deformable mirror with water cooling vol.25, pp.24, 2017, https://doi.org/10.1364/OE.25.029916
  3. New high-density deformable mirrors for high-contrast imaging vol.545, 2012, https://doi.org/10.1051/0004-6361/201219707
  4. Research on controlling thermal deformable mirror’s influence functions via manipulating thermal fields vol.53, pp.2, 2014, https://doi.org/10.1364/AO.53.000237
  5. Research on the particular temperature-induced surface shape of a National Ignition Facility deformable mirror vol.52, pp.2, 2013, https://doi.org/10.1364/AO.52.000280
  6. Theoretical and experimental research on temperature-induced surface distortion of deformable mirror vol.26, pp.24, 2018, https://doi.org/10.1364/OE.26.032205