References
- J. M. Beckers, 'Adaptive Optics for Astronomy: Prin-ciples, Performance and Applications,' Annual Review of Astronomy and Astrophysics, vol. 31, pp. 13-22, 1993 https://doi.org/10.1146/annurev.aa.31.090193.000305
-
A. V. Kudryashov and V. V. Samarkin, 'Control of high power
$C0_2$ laser beam by adaptive optical elements,' Optics Communication, vol. 118, pp. 317-322, 1995 https://doi.org/10.1016/0030-4018(95)00218-W - J. L. Gargasson, M. Glanc, and P. Lena, 'Retinal Imaging with adaptive optics,' C.R. Acad. Sci. Paris., t.2, Serie IV, pp. 1131-1138, 2001 https://doi.org/10.1016/S1296-2147(01)01261-6
- S. Arnon and N. S. Kopeika, 'Adaptive optical transmitter and receiver for space communication through thin clouds,' Applied Optics, vol. 36, no. 9, pp. 1987-1993, 1997 https://doi.org/10.1364/AO.36.001987
- Z. Kam, B. Hanser, M. G. L. Gustafsson, D. A. Agard, and J. W. Sedat, 'Computational adaptive optics for live three-dimensional biological imaging,' PNAS, vol. 98, no. 7, pp. 3790-3795, 2001 https://doi.org/10.1073/pnas.071275698
- M. L. Holohan and J. C. Dainty, 'Low-order adaptive optics: a possible use in underwater imaging?,' Optics & Laser Technology, vol. 29, no. 1, pp. 51-55, 1997 https://doi.org/10.1016/S0030-3992(96)00051-5
- E. J. Szetela and A. I. Chalfant, 'Thermal distortion of mirrors,' Thermochimica Acta, vol. 26, pp. 191-197, 1978 https://doi.org/10.1016/0040-6031(78)80067-7
- C. A. Klein, 'High-Power CW Laser Windows: Edge-Cooled or Face-Cooled?,' Proc. SPIE, vol. 1739, pp. 230-253, 1992 https://doi.org/10.1117/12.140504
- M. A. Ealey and A. Wellman, 'Cooled ISOFLOW laser mirrors,' Proc. SPIE, vol. 1739, pp. 374-382, 1993 https://doi.org/10.1117/12.140500
- Y. Li, A. M. Khounsary, J. Maser, and S. Nair, 'Cooled mirror for a double-undulator beamline,' Proc. SPIE, vol. 5193, pp. 204-210, 2004 https://doi.org/10.1117/12.524908
- A. G. Safronov, 'Controllable bimorph optics based on piezoelectric structures,' Ph. D. thesis, General Physics Institute of Russian Academy of Sciences, 1995
- A. G. Safronov, B. S. Vinevitch, and V. M. Zharikov, 'Controllable curvature mirrors for laser techniques', Proc. SPIE, vol. 3686, pp. 16-25, 1999 https://doi.org/10.1117/12.335857
- M.A.Vorontsov, G.M.Izakson, A.V.Kudryashov, G.A. Kosheleva, S.I.Nazarkin, Yu.F.Suslov, and V.I.Shmalgauzen, 'Adaptive cooled mirror for the resonator of an industrial laser,' Sov. J. of Quantum Electron., vol. 15, p. 888, 1985 https://doi.org/10.1070/QE1985v015n07ABEH007274
- J.H. Lee, Y.C. Lee, and H. J. Cheon, 'A circular bimorph deformable mirror for circular/annulus/square laser beam compensation,' J. Opt. Soc. Korea, vol. 10, no. 1, pp. 23-27, 2006 https://doi.org/10.3807/JOSK.2006.10.1.023
- Jun Ho Lee, Tae-Kyung Uhm, and Sung Kie Young, 'First-Order Analysis of Thin-Plate Deformable Mirrors,' J. Kor. Phys. Soc., vol. 44, no. 6, pp. 1412-1416, 2004
- F. Incropera and D. P. De Witt, Introduction to Heat Transfer, John Wiley & Sons, 2nd Ed., 1990
Cited by
- A self-correction method for deformable mirror with thermal deformation vol.145, 2017, https://doi.org/10.1016/j.ijleo.2017.08.006
- Development of a unimorph deformable mirror with water cooling vol.25, pp.24, 2017, https://doi.org/10.1364/OE.25.029916
- New high-density deformable mirrors for high-contrast imaging vol.545, 2012, https://doi.org/10.1051/0004-6361/201219707
- Research on controlling thermal deformable mirror’s influence functions via manipulating thermal fields vol.53, pp.2, 2014, https://doi.org/10.1364/AO.53.000237
- Research on the particular temperature-induced surface shape of a National Ignition Facility deformable mirror vol.52, pp.2, 2013, https://doi.org/10.1364/AO.52.000280
- Theoretical and experimental research on temperature-induced surface distortion of deformable mirror vol.26, pp.24, 2018, https://doi.org/10.1364/OE.26.032205