• 제목/요약/키워드: hierarchical resampling

검색결과 3건 처리시간 0.022초

2차원 리샘플링에 기반한 광선추적법의 속도 향상 기법 (Speed Enhancement Technique for Ray Casting using 2D Resampling)

  • 이래경;임인성
    • 한국정보과학회논문지:시스템및이론
    • /
    • 제27권8호
    • /
    • pp.691-700
    • /
    • 2000
  • 볼륨 데이타에 대한 팔진트리와 같은 계층 자료구조를 사용하는 광선 추적법은 모든 광선이 계층구조를 순회하는 것으로 인한 중복된 계산을 포함하고 있으며, 좋은 화질의 영상을 얻기 위한 3차원 보간으로 인하여 많은 계산 비용을 요구한다. 본 논문은 볼륨 데이타의 계층구조에 대한 중복된 방문을 피하고, 오직 한 번만 계층구조를 방문하면서 효과적으로 광선의 리샘플링 지점을 결정하여 색상과 투병도를 구하는 볼륨 렌더링 알고리듬을 제안한다. 이 방법은 물체 순서로 광선 추적법을 수행하면서, 각 복셀 주위에서의 리샘플링 지점을 점진적으로 찾아가면서 각 슬라이스 상에서의 2차원 보간에 기반을 둔 리샘플링을 수행한다. 또한 물체 순서 렌더링에서는 조기 광선 종결과 같은 최적화 기법을 구현하기 힘든데, 영상공간에서의 동적 자료구조를 이용하여 이를 효과적으로 해결하였다 본 논문이 제안한 방법은 구현하기 쉽고 속도 향상을 위하여 추가적으로 요구되는 메모리가 매우 적기 때문에 광선 추적법과 쉬어 와핑 방법 사이의 성능 차이를 메워주는 효과적인 방법으로 사용될 수 있을 것이다.

  • PDF

계층적 리샘플링 및 자기교차방지 운동성을 이용한 변형 모델 (Deformable Model using Hierarchical Resampling and Non-self-intersecting Motion)

  • 박주영
    • 한국정보과학회논문지:시스템및이론
    • /
    • 제29권11호
    • /
    • pp.589-600
    • /
    • 2002
  • 변형 모델은 볼륨영상으로부터 관심 대상 객체의 3차원적 경계면 구조 추출을 위해 효과적인 접근 방법을 제공한다. 그러나, 기존 변형 모델은 초기 조건에 민감하고, 심한 함몰 및 돌출 부위를 가지는 복잡한 경계면을 잘 표현하지 못하면, 모델 내 구성 요소들 간에 자기교차를 일으킬 수 있는 세가지 주요 제한점이 있다. 본 논문에서는 기존 변형 모델이 갖는 이러한 제한점을 개선함으로써 복잡한 기하학적 표면 형태를 가지는 객체의 경계면 추출에 효과적인 변형 모델을 제안한다. 첫째, 제안 변형 모델은 다해상도 볼륨영상 피라미드를 기반으로 모델구성 요소들을 계층적으로 리샘플링한다. 이 접근은 객체의 경계면을 멀티스케일 방식으로 추출함으로써 초기화에의 의존성을 극복할 뿐 아니라, 모델 구성 요소들의 크기를 복셀 크기에 따라 항상 균일하게 유지함으로써 모델이 영상의 복잡한 특성 정보에 따라 유동적으로 변형될 수 있게 한다. 둘째, 제안 변형 모델은 기존 모델에서 가지는 내력과 외력 외에 자기교차방지력을 포함한다. 자기교차방지력은 제한 거리 이내로 근접한 비인접 모델구성 요소들간에 척력을 적용함으로써 자기교차를 사전에 방지한 수 있게 한다. 본 논문에서는 다양한 합성 볼륨영상 및 뇌 MR 볼륨영상에 대한 실험을 통해서 제안 모델이 초기화 위치에 의존하지 않고 자기교차 없이 복잡한 함몰 및 돌출 경계면 구조를 성공적으로 추출한 결과를 보인다.

Bayesian Test of Quasi-Independence in a Sparse Two-Way Contingency Table

  • Kwak, Sang-Gyu;Kim, Dal-Ho
    • Communications for Statistical Applications and Methods
    • /
    • 제19권3호
    • /
    • pp.495-500
    • /
    • 2012
  • We consider a Bayesian test of independence in a two-way contingency table that has some zero cells. To do this, we take a three-stage hierarchical Bayesian model under each hypothesis. For prior, we use Dirichlet density to model the marginal cell and each cell probabilities. Our method does not require complicated computation such as a Metropolis-Hastings algorithm to draw samples from each posterior density of parameters. We draw samples using a Gibbs sampler with a grid method. For complicated posterior formulas, we apply the Monte-Carlo integration and the sampling important resampling algorithm. We compare the values of the Bayes factor with the results of a chi-square test and the likelihood ratio test.