Abstract
Deformable models offer an attractive approach for extracting three-dimensional boundary structures from volumetric images. However, conventional deformable models have three major limitations - sensitive to initial condition, difficult to represent complex boundaries with severe object concavities and protrusions, and self-intersective between model elements. This paper proposes a deformable model that is effective to extract geometrically complex boundary surfaces by improving away the limitations of conventional deformable models. First, the proposed deformable model resamples its elements hierarchically based on volume image pyramid. The hierarchical resampling overcomes sensitivity to initialization by extracting the boundaries of objects in a multiscale scheme and enhances geometric flexibility to be well adapted to complex image features by refining and regularizing the size of model elements based on voxel size. Second, the physics-based formulation of our model integrates conventional internal and external forces, as well as a non-self-intersecting force. The non-self-intersecting force effectively prevents collision or crossing over between non-neighboring model elements by pushing each other apart if they are closer than a limited distance. We show that the proposed model successively extracts the complex boundaries including severe concavities and protrusions, neither depending on initial position nor causing self-intersection, through the experiments on several computer-generated volume images and brain MR volume images.
변형 모델은 볼륨영상으로부터 관심 대상 객체의 3차원적 경계면 구조 추출을 위해 효과적인 접근 방법을 제공한다. 그러나, 기존 변형 모델은 초기 조건에 민감하고, 심한 함몰 및 돌출 부위를 가지는 복잡한 경계면을 잘 표현하지 못하면, 모델 내 구성 요소들 간에 자기교차를 일으킬 수 있는 세가지 주요 제한점이 있다. 본 논문에서는 기존 변형 모델이 갖는 이러한 제한점을 개선함으로써 복잡한 기하학적 표면 형태를 가지는 객체의 경계면 추출에 효과적인 변형 모델을 제안한다. 첫째, 제안 변형 모델은 다해상도 볼륨영상 피라미드를 기반으로 모델구성 요소들을 계층적으로 리샘플링한다. 이 접근은 객체의 경계면을 멀티스케일 방식으로 추출함으로써 초기화에의 의존성을 극복할 뿐 아니라, 모델 구성 요소들의 크기를 복셀 크기에 따라 항상 균일하게 유지함으로써 모델이 영상의 복잡한 특성 정보에 따라 유동적으로 변형될 수 있게 한다. 둘째, 제안 변형 모델은 기존 모델에서 가지는 내력과 외력 외에 자기교차방지력을 포함한다. 자기교차방지력은 제한 거리 이내로 근접한 비인접 모델구성 요소들간에 척력을 적용함으로써 자기교차를 사전에 방지한 수 있게 한다. 본 논문에서는 다양한 합성 볼륨영상 및 뇌 MR 볼륨영상에 대한 실험을 통해서 제안 모델이 초기화 위치에 의존하지 않고 자기교차 없이 복잡한 함몰 및 돌출 경계면 구조를 성공적으로 추출한 결과를 보인다.