• Title/Summary/Keyword: hierarchical neural network

Search Result 127, Processing Time 0.023 seconds

Hierarchical neural network for damage detection using modal parameters

  • Chang, Minwoo;Kim, Jae Kwan;Lee, Joonhyeok
    • Structural Engineering and Mechanics
    • /
    • v.70 no.4
    • /
    • pp.457-466
    • /
    • 2019
  • This study develops a damage detection method based on neural networks. The performance of the method is numerically and experimentally verified using a three-story shear building model. The framework is mainly composed of two hierarchical stages to identify damage location and extent using artificial neural network (ANN). The normalized damage signature index, that is a normalized ratio of the changes in the natural frequency and mode shape caused by the damage, is used to identify the damage location. The modal parameters extracted from the numerically developed structure for multiple damage scenarios are used to train the ANN. The positive alarm from the first stage of damage detection activates the second stage of ANN to assess the damage extent. The difference in mode shape vectors between the intact and damaged structures is used to determine the extent of the related damage. The entire procedure is verified using laboratory experiments. The damage is artificially modeled by replacing the column element with a narrow section, and a stochastic subspace identification method is used to identify the modal parameters. The results verify that the proposed method can accurately detect the damage location and extent.

Graph Reasoning and Context Fusion for Multi-Task, Multi-Hop Question Answering (다중 작업, 다중 홉 질문 응답을 위한 그래프 추론 및 맥락 융합)

  • Lee, Sangui;Kim, Incheol
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.10 no.8
    • /
    • pp.319-330
    • /
    • 2021
  • Recently, in the field of open domain natural language question answering, multi-task, multi-hop question answering has been studied extensively. In this paper, we propose a novel deep neural network model using hierarchical graphs to answer effectively such multi-task, multi-hop questions. The proposed model extracts different levels of contextual information from multiple paragraphs using hierarchical graphs and graph neural networks, and then utilize them to predict answer type, supporting sentences and answer spans simultaneously. Conducting experiments with the HotpotQA benchmark dataset, we show high performance and positive effects of the proposed model.

Unsupervised learning with hierarchical feature selection for DDoS mitigation within the ISP domain

  • Ko, Ili;Chambers, Desmond;Barrett, Enda
    • ETRI Journal
    • /
    • v.41 no.5
    • /
    • pp.574-584
    • /
    • 2019
  • A new Mirai variant found recently was equipped with a dynamic update ability, which increases the level of difficulty for DDoS mitigation. Continuous development of 5G technology and an increasing number of Internet of Things (IoT) devices connected to the network pose serious threats to cyber security. Therefore, researchers have tried to develop better DDoS mitigation systems. However, the majority of the existing models provide centralized solutions either by deploying the system with additional servers at the host site, on the cloud, or at third party locations, which may cause latency. Since Internet service providers (ISP) are links between the internet and users, deploying the defense system within the ISP domain is the panacea for delivering an efficient solution. To cope with the dynamic nature of the new DDoS attacks, we utilized an unsupervised artificial neural network to develop a hierarchical two-layered self-organizing map equipped with a twofold feature selection for DDoS mitigation within the ISP domain.

Navigation Strategy of Mobile Robots based on Fuzzy Neural Network with Hierarchical Structure (계층적 구조를 가진 Fuzzy Neural Network를 이용한 이동로보트의 주행법)

  • 최정원;한교경;박만식;이석규
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2000.11a
    • /
    • pp.269-273
    • /
    • 2000
  • This paper proposes a algorithm for several mobile robots navigation. There are three parts in this algorithm. First part generates robots turning angle and moving distance for goal approaching, sencond part generates robots avoiding angle and avoiding distance for static obstacles or other robots and third part adjust between robots moving distance and avoiding distance. Most simulation results of this algorithm are very effective for several mobile robots traveling in unknown field.

  • PDF

Two-Degree-of Freedom Fuzzy Neural Network Control System And Its Application To Vehicle Control

  • Sekine, Satoshi;Yamaguchi, Toru;Tamagawa, Kouichirou;Endo, Tunekazu
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1993.06a
    • /
    • pp.1121-1124
    • /
    • 1993
  • We propose two-degree-of-freedom fuzzy neural network control systems. It has a hierarchical structure of two sets of control knowledge, thus it is easy to extract and refine fuzzy rules before and after the operation has started, and the number of fuzzy rules is reduced. In addition an example application of automatic vehicle operation is reported and its usefulness is shown simulation.

  • PDF

Deep Structured Learning: Architectures and Applications

  • Lee, Soowook
    • International Journal of Advanced Culture Technology
    • /
    • v.6 no.4
    • /
    • pp.262-265
    • /
    • 2018
  • Deep learning, a sub-field of machine learning changing the prospects of artificial intelligence (AI) because of its recent advancements and application in various field. Deep learning deals with algorithms inspired by the structure and function of the brain called artificial neural networks. This works reviews basic architecture and recent advancement of deep structured learning. It also describes contemporary applications of deep structured learning and its advantages over the treditional learning in artificial interlligence. This study is useful for the general readers and students who are in the early stage of deep learning studies.

Medical Image Classification based on Hierarchical CNN Model (계층적 형태의 Convolutional Neural Network를 이용한 의료영상 분류 알고리즘)

  • Lee, Sang-Hyuk;Han, Jong-Ki
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2018.06a
    • /
    • pp.248-249
    • /
    • 2018
  • 본 논문에서는 고해상도 자궁 내막 세포들을 대상으로 정상세포와 이상세포들을 구별하기 위한 알고리즘을 제안한다. 구체적으로 계층적 구조를 갖는 Convolutional Neural Network (CNN) 모델을 기반으로 네 가지 세포들을 구분하는 알고리즘을 제안한다. 이 연구에서 고해상도 영상을 분류하면서도 복잡도 증가를 막기 위해 효율적인 전처리 과정을 사용하였다. 다양한 컴퓨터 실험을 통하여 제안하는 기술을 사용할 때, 인식률이 향상되는 것을 확인할 수 있었다.

  • PDF

Neural network-based generation of artificial spatially variable earthquakes ground motions

  • Ghaffarzadeh, Hossein;Izadi, Mohammad Mahdi;Talebian, Nima
    • Earthquakes and Structures
    • /
    • v.4 no.5
    • /
    • pp.509-525
    • /
    • 2013
  • In this paper, learning capabilities of two types of Arterial Neural Networks, namely hierarchical neural networks and Generalized Regression Neural Network were used in a two-stage approach to develop a method for generating spatial varying accelerograms from acceleration response spectra and a distance parameter in which generated accelerogram is desired. Data collected from closely spaced arrays of seismographs in SMART-1 array were used to train neural networks. The generated accelerograms from the proposed method can be used for multiple support excitations analysis of structures that their supports undergo different motions during an earthquake.

Development of a Knowledge Discovery System using Hierarchical Self-Organizing Map and Fuzzy Rule Generation

  • Koo, Taehoon;Rhee, Jongtae
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2001.01a
    • /
    • pp.431-434
    • /
    • 2001
  • Knowledge discovery in databases(KDD) is the process for extracting valid, novel, potentially useful and understandable knowledge form real data. There are many academic and industrial activities with new technologies and application areas. Particularly, data mining is the core step in the KDD process, consisting of many algorithms to perform clustering, pattern recognition and rule induction functions. The main goal of these algorithms is prediction and description. Prediction means the assessment of unknown variables. Description is concerned with providing understandable results in a compatible format to human users. We introduce an efficient data mining algorithm considering predictive and descriptive capability. Reasonable pattern is derived from real world data by a revised neural network model and a proposed fuzzy rule extraction technique is applied to obtain understandable knowledge. The proposed neural network model is a hierarchical self-organizing system. The rule base is compatible to decision makers perception because the generated fuzzy rule set reflects the human information process. Results from real world application are analyzed to evaluate the system\`s performance.

  • PDF

Research Trends in Quantum Error Decoders for Fault-Tolerant Quantum Computing (결함허용 양자 컴퓨팅을 위한 양자 오류 복호기 연구 동향)

  • E.Y. Cho;J.H. On;C.Y. Kim;G. Cha
    • Electronics and Telecommunications Trends
    • /
    • v.38 no.5
    • /
    • pp.34-50
    • /
    • 2023
  • Quantum error correction is a key technology for achieving fault-tolerant quantum computation. Finding the best decoding solution to a single error syndrome pattern counteracting multiple errors is an NP-hard problem. Consequently, error decoding is one of the most expensive processes to protect the information in a logical qubit. Recent research on quantum error decoding has been focused on developing conventional and neural-network-based decoding algorithms to satisfy accuracy, speed, and scalability requirements. Although conventional decoding methods have notably improved accuracy in short codes, they face many challenges regarding speed and scalability in long codes. To overcome such problems, machine learning has been extensively applied to neural-network-based error decoding with meaningful results. Nevertheless, when using neural-network-based decoders alone, the learning cost grows exponentially with the code size. To prevent this problem, hierarchical error decoding has been devised by combining conventional and neural-network-based decoders. In addition, research on quantum error decoding is aimed at reducing the spacetime decoding cost and solving the backlog problem caused by decoding delays when using hardware-implemented decoders in cryogenic environments. We review the latest research trends in decoders for quantum error correction with high accuracy, neural-network-based quantum error decoders with high speed and scalability, and hardware-based quantum error decoders implemented in real qubit operating environments.