• 제목/요약/키워드: hierarchical motion controller

검색결과 9건 처리시간 0.025초

독립 비젼 시스템 기반의 축구로봇을 위한 계층적 행동 제어기 (A Hierarchical Motion Controller for Soccer Robots with Stand-alone Vision System)

  • 이동일;김형종;김상준;장재완;최정원;이석규
    • 한국정밀공학회지
    • /
    • 제19권9호
    • /
    • pp.133-141
    • /
    • 2002
  • In this paper, we propose a hierarchical motion controller with stand-alone vision system to enhance the flexibility of the robot soccer system. In addition, we simplified the model of dynamic environments of the robot using petri-net and simple state diagram. Based on the proposed model, we designed the robot soccer system with velocity and position controller that includes 4-level hierarchically structured controller. Some experimental results using the stand-alone vision system from host system show improvement of the controller performance by reducing processing time of vision algorithm.

Motion control in mechatronics devices

  • Kyura, Nobuhiro
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1992년도 한국자동제어학술회의논문집(국제학술편); KOEX, Seoul; 19-21 Oct. 1992
    • /
    • pp.36-48
    • /
    • 1992
  • This paper describes motion control system applied to mechatronics devices. It is pointed out that a new approach is necessary to realize a good performance motion control. At first, a motion controller of mechatronics devices is introduced. The controller is constructed from four layer of hierarchical structure. After that two practical examples are presented to introduce the new approach to advanced motion control exactly.

  • PDF

운동관절 데이터베이스를 이용한 3차원 인체모형의 동작제어 (Motion Control of 3D Human Character Using Motion Database)

  • 김시중;국태용
    • 한국멀티미디어학회:학술대회논문집
    • /
    • 한국멀티미디어학회 1998년도 춘계학술발표논문집
    • /
    • pp.262-267
    • /
    • 1998
  • A hierarchical motion control system for animation of 3D human character is implemented using the motion database in realtime. The proposed motion control system consists of coordination controller for gait timing and balancing of walking motion, joint servo controller for realistic limb movement, and motion database for goal-directed character animation which makes time-consuming animation relatively easy task. As one example among the various applications of the proposed motion control system. We present a simple virtual reality system in which the motion control system plays a central role in generating realistic motion of virtual human character.

  • PDF

Fuzzy hybrid control of a wind-excited tall building

  • Kang, Joo-Won;Kim, Hyun-Su
    • Structural Engineering and Mechanics
    • /
    • 제36권3호
    • /
    • pp.381-399
    • /
    • 2010
  • A fuzzy hybrid control technique using a semi-active tuned mass damper (STMD) has been proposed in this study for mitigation of wind induced motion of a tall building. For numerical simulation, a third generation benchmark is employed for a wind-excited 76-story building. A magnetorheological (MR) damper is used to compose an STMD. The proposed control technique employs a hierarchical structure consisting of two lower-level semi-active controllers (sub-controllers) and a higher-level fuzzy hybrid controller. Skyhook and groundhook control algorithms are used as sub-controllers. When a wind load is applied to the benchmark building, each sub-controller provides different control commands for the STMD. These control commands are appropriately combined by the fuzzy hybrid controller during realtime control. Results from numerical simulations demonstrate that the proposed fuzzy hybrid control technique can effectively reduce the STMD motion as well as building responses compared to the conventional hybrid controller. In addition, it is shown that the control performance of the STMD is superior to that of the sample TMD and comparable to an active TMD, but with a significant reduction in power consumption.

초음파 센서를 이용한 이동 로봇 시스템의 고속 실내 주행을 위한 하이브리드 시스템 제어기의 구현 (Implementation of Hybrid System Controller for High-Speed Indoor Navigation of Mobile Robot System Using the Ultra-Sonic Sensors)

  • 임미섭;임준홍;오상록;유범재;윤인식
    • 제어로봇시스템학회논문지
    • /
    • 제7권9호
    • /
    • pp.774-782
    • /
    • 2001
  • In this paper, we propose a new approach to the autonomous and high-speed indoor navigation of wheeled mobile robots using hybrid system controller. The hierarchical structure of hybrid system presented consists of high-level reasoning process and the low-level motion control process and the environmental interaction. In a discrete event system, the discrete states are defined by the user-defined constraints and the reference motion commands are specified in the abstracted motions. The hybrid control system applied for the nonholonomic mobile robots can combine the motion planning and autonomous navigation with obstacle avoidance in the indoor navigation problem. For the evaluation of the proposed algorithm, the algorithm is implemented to the two-wheel driven mobile robot system. The experimental results show that the hybrid system approach is an effective method for the autonomous navigation in indoor environments.

  • PDF

스카라형 이중 아암 로봇의 실시간 퍼지제어기 실현 (Implementation of Real-Time Fuzzy Controller for SCARA Type Dual-Arm Robot)

  • 김홍래;한성현
    • 제어로봇시스템학회논문지
    • /
    • 제10권12호
    • /
    • pp.1223-1232
    • /
    • 2004
  • We present a new technique to the design and real-time implementation of fuzzy control system basedon digital signal processors in order to improve the precision and robustness for system of industrial robot in this paper. The need to meet demanding control requirement in increasingly complex dynamical control systems under significant uncertainties, leads toward design of intelligent manipulation robots. The TMS320C80 is used in implementing real time fuzzy control to provide an enhanced motion control for robot manipulators. In this paper, a Self-Organizing Fuzzy Controller for the industrial robot manipulator with a actuator located at the base is studied. A fuzzy logic composed of linguistic conditional statements is employed by defining the relations of input-output variables of the controller. In the synthesis of a Fuzzy Logic Controller, one of the most difficult problems is the determination of linguistic control rules from the human operators. To overcome this difficult Self-Organizing Fuzzy Controller is proposed for a hierarchical control structure consisting of basic and high levels that modify control rules. The proposed Self-Organizing Fuzzy Controller scheme is simple in structure, fast in computation, and suitable for implementation of real-time control. Performance of the SOFC is illustrated by simulation and experimental results for a Dual-Arm robot with eight joints.

DSPs(TMS320C80)을 이용한 8축 듀얼 아암 로봇의 실시간 퍼지제어 (Real-Time Fuzzy Control for Dual-Arm with 8 Joints Robot Using the DSPs(TMS320C80))

  • 한성현;김종수
    • 한국공작기계학회논문집
    • /
    • 제13권1호
    • /
    • pp.35-47
    • /
    • 2004
  • In this paper presents a new approach to the design and real-time implementation of fuzzy control system based-on digital signal processors(DSP:IMS320C80) in order to improve the precision and robustness for system of industrial robot(Dual-Arm with 8 joint Robot). The need to meet demanding control requirement in increasingly complex dynamical control systems under significant uncertainties, leads toward design of intelligent manipulation robots. The IMS320C80 is used in implementing real time fuzzy control to provide an enhanced motion control for robot manipulators. In this paper, a Self-Organizing Fuzzy Controller(SOFC) for the industrial robot manipulator with a actuator located at the base is studied. A fuzzy logic composed of linguistic conditional statements is employed by defining the relations of input-output variables of the controller. In the synthesis of a FLC(Fuzzy Logic Controller), one of the most difficult problems is the determination of linguistic control rules from the human operators. To overcome this difficult SOFC is proposed for a hierarchical control structure consisting of basic and high levels that modify control rules. The proposed SOFC scheme is simple in structure, Int in computation, and suitable for implementation of real-time control. Performance of the SOFC is illustrated by simulation and experimental results for a Dual-Arm robot with eight joints.

DSP를 사용한 소형 인간형 로봇의 제어기 (A DSP-based Controller for a Small Humanoid Robot)

  • 조정산;성영휘
    • 융합신호처리학회논문지
    • /
    • 제6권4호
    • /
    • pp.191-197
    • /
    • 2005
  • 2족 보행을 특징으로 하는 인간형 로봇은 구동해야할 관절의 수가 매우 많으며, 로봇의 보행 상태 등을 인식하기 위하여 다양한 센서의 활용이 필요하다. 본 논문에서는 21개의 RC 서보 모터를 사용한 소형의 2족 보행 로봇의 제어기의 구조를 제안하고 구현한다. 제안된 제어기는 호스트 PC와 DSP를 사용한 주 제어기, 그리고 FPGA를 사용한 보조 제어기의 계층 구조를 갖는다. 호스트 PC에서는 보폭, 보행 시간 등과 같은 보행 파라미터에 따른 로봇의 보행 데이터를 생성하여 주 제어기로 전송하고, TI사에서 제어용으로 출시된 DSP 칩인 TMS320LF2407A를 사용하여 구현된 주 제어기에서는 보조 제어기를 통하여 21개의 RC 서보 모터를 구동한다. 또한 주 제어기와 2축 가속도 센서를 인터페이스하여 보행 바닥면의 경사도에 따른 균형잡기 실험과 기울어진 바닥면의 기울기를 검출하여 경사면 보행이 가능함을 보인다.

  • PDF

가정용 지능형 경비 로봇 시스템 개발 (Development of an Intelligent Security Robot System for Home Surveillance)

  • 박정호;신동관;우춘규;김형철;권용관;최병욱
    • 제어로봇시스템학회논문지
    • /
    • 제13권8호
    • /
    • pp.810-816
    • /
    • 2007
  • A security robot system named EGIS-SR is a mobile security robot through one of the new growth engine project in robotic industries. It allows home surveillance through an autonomous mobile platform using onboard cameras and wireless security sensors. EGIS-SR has many sensors to allow autonomous navigation, hierarchical control architecture to handle lots of situations in monitoring home surveillance and mighty networks to achieve unmanned security services. EGIS-SR is tightly coupled with a networked security environment, where the information of the robot is remotely connected with the remote cockpit and patrol man. It achieved an intelligent unmanned security service. The robot is a two-wheeled mobile robot and has casters and suspension to overcome a doorsill. The dynamic motion is verified through $ADAMS^{TM}$ simulation. For the main controller, PXA270 based hardware platform based on linux kernel 2.6 is developed. In the linux platform, data handling for various sensors and the localization algorithm are performed. Also, a local path planning algorithm for object avoidance with ultrasonic sensors and localization using $StarGazer^{TM}$ is developed. Finally, for the automatic charging, a docking algorithm with infrared ray system is implemented.