• Title/Summary/Keyword: hierarchical learning

Search Result 351, Processing Time 0.022 seconds

Investigating Online Learning Types Based on self-regulated learning in Online Software Education: Applying Hierarchical Cluster Analysis (온라인 소프트웨어 교육에서 학습자의 자기조절학습 관련 특성에 기반한 온라인 학습 유형 분석: 계층적 군집 분석 기법을 활용하여)

  • Han, Jeongyun;Lee, Sunghye
    • The Journal of Korean Association of Computer Education
    • /
    • v.22 no.5
    • /
    • pp.51-65
    • /
    • 2019
  • This study aims to provide educational implications for more strategic online software education by the types of online learning according to learners' self-regulated learning characteristics in the online software education environment and examining the characteristics of each type. For this, variables related to self-regulated learning characteristic were extracted from the log data of 809 students participating in the online software learning program of K University, and then analyzed using hierarchical cluster analysis. Based on hierarchical cluster analysis learner clusters according to the characteristics of self-regulated learning were derived and the differences between learners' learning characteristics and learning results according to cluster types were examined. As a result, the types of self-regulated learning of online software learners were classified as 'high level self-regulated learning type (group 1)', 'medium level self-regulated learning type (group 2)', and 'low level self-regulated learning type (group 3)'. The achievement level was found to be highest in 'high-level self-regulated learning type (group 1)' and 'low-level self-regulated learning type (group 3)' was the lowest. Based on these results, the implications for effective online software education were suggested.

A Study on the Prediction of Learning Results Using Machine Learning (기계학습을 활용한 대학생 학습결과 예측 연구)

  • Kim, Yeon-Hee;Lim, Soo-Jin
    • The Journal of the Korea Contents Association
    • /
    • v.20 no.6
    • /
    • pp.695-704
    • /
    • 2020
  • Recently, There has been an increasing of utilization IT, and studies have been conducted on predicting learning results. In this study, Learning activity data were collected that could affect learning outcomes by using learning analysis. The survey was conducted at a university in South Chung-Cheong Province from October to December 2018, with 1,062 students taking part in the survey. First, A Hierarchical regression analysis was conducted by organizing a model of individual, academic, and behavioral factors for learning results to ensure the validity of predictors in machine learning. The model of hierarchical regression was significant, and the explanatory power (R2) was shown to increase step by step, so the variables injected were appropriate. In addition, The linear regression analysis method of machine learning was used to determine how predictable learning outcomes are, and its error rate was collected at about 8.4%.

General Purpose Operation Unit Using Modular Hierarchical Structure of Expert Network (Expert Network의 모듈형 계층구조를 이용한 범용 연산회로 설계)

  • 양정모;홍광진;조현찬;서재용;전홍태
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09b
    • /
    • pp.122-125
    • /
    • 2003
  • By advent of NNC(Neural Network Chip), it is possible that process in parallel and discern the importance of signal with learning oneself by experience in external signal. So, the design of general purpose operation unit using VHDL(VHSIC Hardware Description Language) on the existing FPGA(Field Programmable Gate Array) can replaced EN(Expert Network) and learning algorithm. Also, neural network operation unit is possible various operation using learning of NN(Neural Network). This paper present general purpose operation unit using hierarchical structure of EN EN of presented structure learn from logical gate which constitute a operation unit, it relocated several layer The overall structure is hierarchical using a module, it has generality more than FPGA operation unit.

  • PDF

Intrusion Detection Approach using Feature Learning and Hierarchical Classification (특징학습과 계층분류를 이용한 침입탐지 방법 연구)

  • Han-Sung Lee;Yun-Hee Jeong;Se-Hoon Jung
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.19 no.1
    • /
    • pp.249-256
    • /
    • 2024
  • Machine learning-based intrusion detection methodologies require a large amount of uniform learning data for each class to be classified, and have the problem of having to retrain the entire system when adding an attack type to be detected or classified. In this paper, we use feature learning and hierarchical classification methods to solve classification problems and data imbalance problems using relatively little training data, and propose an intrusion detection methodology that makes it easy to add new attack types. The feasibility of the proposed system was verified through experiments using KDD IDS data..

A Hierarchical deep model for food classification from photographs

  • Yang, Heekyung;Kang, Sungyong;Park, Chanung;Lee, JeongWook;Yu, Kyungmin;Min, Kyungha
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.4
    • /
    • pp.1704-1720
    • /
    • 2020
  • Recognizing food from photographs presents many applications for machine learning, computer vision and dietetics, etc. Recent progress of deep learning techniques accelerates the recognition of food in a great scale. We build a hierarchical structure composed of deep CNN to recognize and classify food from photographs. We build a dataset for Korean food of 18 classes, which are further categorized in 4 major classes. Our hierarchical recognizer classifies foods into four major classes in the first step. Each food in the major classes is further classified into the exact class in the second step. We employ DenseNet structure for the baseline of our recognizer. The hierarchical structure provides higher accuracy and F1 score than those from the single-structured recognizer.

Analysis of the Online Review Based on the Theme Using the Hierarchical Attention Network (Hierarchical Attention Network를 활용한 주제에 따른 온라인 고객 리뷰 분석 모델)

  • Jang, In Ho;Park, Ki Yeon;Lee, Zoon Ky
    • Journal of Information Technology Services
    • /
    • v.17 no.2
    • /
    • pp.165-177
    • /
    • 2018
  • Recently, online commerces are becoming more common due to factors such as mobile technology development and smart device dissemination, and online review has a big influence on potential buyer's purchase decision. This study presents a set of analytical methodologies for understanding the meaning of customer reviews of products in online transaction. Using techniques currently developed in deep learning are implemented Hierarchical Attention Network for analyze meaning in online reviews. By using these techniques, we could solve time consuming pre-data analysis time problem and multiple topic problems. To this end, this study analyzes customer reviews of laptops sold in domestic online shopping malls. Our result successfully demonstrates over 90% classification accuracy. Therefore, this study classified the unstructured text data in the semantic analysis and confirmed the practical application possibility of the review analysis process.

Automatic learning of fuzzy rules for the equivalent 2 layered hierarchical fuzzy system (동등 변환 2계층 퍼지 시스템의 규칙 자동 학습)

  • Joo, Moon-G.
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.5
    • /
    • pp.598-603
    • /
    • 2007
  • To solve the rule explosion problem in multi-input fuzzy system, a method of converting a given fuzzy system to 2 layered hierarchical fuzzy system has been reported, where at the 1st layer, linearly independent fuzzy rule vectors generated from the given fuzzy system are used and, at the 2nd layer, linear combinations of these independent fuzzy rule vectors are used. In this paper, the steapest descent algorithm is presented to learn the fuzzy rule vectors and related coefficients for the equivalent 2 layered hierarchical structure. By simulation of learning of ball and beam control system, the feasibility of proposed learning scheme is shown.

An autonomous radiation source detection policy based on deep reinforcement learning with generalized ability in unknown environments

  • Hao Hu;Jiayue Wang;Ai Chen;Yang Liu
    • Nuclear Engineering and Technology
    • /
    • v.55 no.1
    • /
    • pp.285-294
    • /
    • 2023
  • Autonomous radiation source detection has long been studied for radiation emergencies. Compared to conventional data-driven or path planning methods, deep reinforcement learning shows a strong capacity in source detection while still lacking the generalized ability to the geometry in unknown environments. In this work, the detection task is decomposed into two subtasks: exploration and localization. A hierarchical control policy (HC) is proposed to perform the subtasks at different stages. The low-level controller learns how to execute the individual subtasks by deep reinforcement learning, and the high-level controller determines which subtasks should be executed at the current stage. In experimental tests under different geometrical conditions, HC achieves the best performance among the autonomous decision policies. The robustness and generalized ability of the hierarchy have been demonstrated.

Electromyogram Pattern Recognition by Hierarchical Temporal Memory Learning Algorithm (시공간적 계층 메모리 학습 알고리즘을 이용한 근전도 패턴인식)

  • Sung, Moo-Joung;Chu, Jun-Uk;Lee, Seung-Ha;Lee, Yun-Jung
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.19 no.1
    • /
    • pp.54-61
    • /
    • 2009
  • This paper presents a new electromyogram (EMG) pattern recognition method based on the Hierarchical Temporal Memory (HTM) algorithm which is originally devised for image pattern recognition. In the modified HTM algorithm, a simplified two-level structure with spatial pooler, temporal pooler, and supervised mapper is proposed for efficient learning and classification of the EMG signals. To enhance the recognition performance, the category information is utilized not only in the supervised mapper but also in the temporal pooler. The experimental results show that the ten kinds of hand motion are successfully recognized.

The Effects of Hypermedia Structure and Cognitive Style on Learning Performance in Elementary Schools (하이퍼미디어 학습 프로그램 구조와 학습자 인식양식이 초등학생 학업성취에 미치는 효과)

  • Kim, Sung-Wan;Hwang, Kyung-Hyun
    • The Journal of Korean Association of Computer Education
    • /
    • v.7 no.3
    • /
    • pp.57-66
    • /
    • 2004
  • The purpose of this study is to determine the relationship among the hypermedia structure(hierarchical and network), learner's cognitive style(field-independent and field-dependent), and learning performance in the elementary school. 128 students(4th graders) having field-independent and field-dependent cognitive style were randomly allocated into hierarchical and network structures of hypermedia learning program. There was not significant interaction between hypermedia structure and cognitive style in learning performance. The students in the hierarchical hypermedia structure showed higher learning performance than ones in the network hypermedia structure. Field-independent students significantly got higher results than field-dependent ones. It is concluded that instructional designers should consider hypermedia structure, learner's cognitive style, and learning outcomes when they plan and design hypermedia learning program.

  • PDF