• Title/Summary/Keyword: hierarchical cell

Search Result 157, Processing Time 0.036 seconds

hierarchical Control and Intelligent Scheduling of Flexible Manufacturing Cell (유연 생산셀의 계층적 제어와 지능형 스케쥴)

  • 서기성;이노성;안인석;박승규;우광방
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.43 no.3
    • /
    • pp.492-503
    • /
    • 1994
  • In this study, the control and scheduling of the flexible manufacturing cell (FMC) is discussed, which can perform the mixed production and relieve the effect of machine failure. The control of the FMC isvery complex task due to the property of multiple jobs and the dynamically changing states. For effective control of proposed FMC, the hierarchical scheme is introduced and the functions of each levels are defined. Especially for the control functions of shop floor level and cell level, the intelligent scheduler is implemented. To show the efficiency of the intelligent scheduler, the production method fo the existing assembly lines was evaluated and compared with the proposed intelligent FMC method. The results from the production performance show that the proposed method is superior to the existing method in various performance indices.

An atomistic model for hierarchical nanostructured porous carbons in molecular dynamics simulations

  • Chae, Kisung;Huang, Liping
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.403.2-403.2
    • /
    • 2016
  • Porous materials play a significant role in energy storage and conversion applications such as catalyst support for polymer electrolyte membrane fuel cell. In particular, hierarchical porous materials with both micropores (poresize, ${\delta}$ < 2 nm) and regularly arranged mesopores (2 nm < ${\delta}$ < 50 nm) are known to greatly enhance the efficiency of catalytic reactions by providing enormous surface area as well as fast mass transport channels for both reactants and products from/to active sites. Although it is generally agreed that the microscopic structure of the porous materials directly affects the performance of these catalytic reactions, neither detailed mechanisms nor fundamental understanding are available at hand. In this study, we propose an atomistic model of hierarchical nanostructured porous carbons (HNPCs) in molecular dynamics simulations. By performing a systematic study, we found that structural features of the HNPC can be independently altered by tuning specific synthesis parameters, while remaining other structures unchanged. In addition, we show some structure-property relations including mechanical and gas transport properties.

  • PDF

Submesh Splines over Hierarchical T-meshes

  • Jin, Liangbing;Deng, Jiansong;Chen, Falai
    • International Journal of CAD/CAM
    • /
    • v.9 no.1
    • /
    • pp.47-53
    • /
    • 2010
  • In this paper we propose a new type of splines-biquadratic submesh splines over hierarchical T-meshes. The biquadratic submesh splines are in rational form consisting of some biquadratic B-splines defined over tensor-product submeshes of a hierarchical T-mesh, where every submesh is around a cell in the crossing-vertex relationship graph of the T-mesh. We provide an effective algorithm to locate the valid tensor-product submeshes. A local refinement algorithm is presented and the application of submesh splines in surface fitting is provided.

수열합성법과 스퍼터링증착법을 이용한 Hierarchical ZnO Nanowire 합성 및 수소생산응용

  • Choe, Yeong-U;Yong, Gi-Jung
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.602-602
    • /
    • 2013
  • 산화아연(ZnO)은 직접 천이 와이드 밴드갭(3.37 eV)과 큰 excitation binding energy (60 meV)를 갖는 II-VI 반도체로 광촉매, light emitting diodes (LED), dye-sensitized solar cell 등의 여러 가지 분야에서 각광받고 있는 물질이다. ZnO는 열역학적으로 안정한 polar terminated (001)면과 nonpolar low-symmetry (100)면을 갖으며 (100)면이 (001)면보다 더 안정하기 때문에 (100)방향의 일차원구조가 쉽게 합성된다. 이러한 일차원 구조는 빛의 산란을 유도하여 더 많은 빛의 흡수를 야기 시킬 뿐만 아니라 일차원 구조를 따라 효율적인 전하 전달을 가능하게 한다. 본 연구에서는 일차원 구조의 장점을 살리면서 더 넓은 표면적을 갖는 hierarchical ZnO nanowire 구조를 수열합성법과 스퍼터링증착법을 이용하여 합성하였다. Hierarchical ZnO nanowire는 SEM, TEM을 이용하여 구조를 관찰하였고 UV-visable spectroscopy를 이용하여 일차원 구조의 ZnO nanowire와의 absorbance, transmittace 차이를 확인하였다.

  • PDF

Emergent damage pattern recognition using immune network theory

  • Chen, Bo;Zang, Chuanzhi
    • Smart Structures and Systems
    • /
    • v.8 no.1
    • /
    • pp.69-92
    • /
    • 2011
  • This paper presents an emergent pattern recognition approach based on the immune network theory and hierarchical clustering algorithms. The immune network allows its components to change and learn patterns by changing the strength of connections between individual components. The presented immune-network-based approach achieves emergent pattern recognition by dynamically generating an internal image for the input data patterns. The members (feature vectors for each data pattern) of the internal image are produced by an immune network model to form a network of antibody memory cells. To classify antibody memory cells to different data patterns, hierarchical clustering algorithms are used to create an antibody memory cell clustering. In addition, evaluation graphs and L method are used to determine the best number of clusters for the antibody memory cell clustering. The presented immune-network-based emergent pattern recognition (INEPR) algorithm can automatically generate an internal image mapping to the input data patterns without the need of specifying the number of patterns in advance. The INEPR algorithm has been tested using a benchmark civil structure. The test results show that the INEPR algorithm is able to recognize new structural damage patterns.

Effect of Micro Casting and Plasma-etching on Polycaprolactone Film for Bone (뼈 재생을위한 폴리카프로락톤 필름에 대한 마이크로 캐스팅 및 플라즈마 에칭)

  • Lee, Jae-Yun;Yang, Ji-Hun;Kim, Geun-Hyeong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2018.06a
    • /
    • pp.24-24
    • /
    • 2018
  • One of the challenges in tissue engineering is the design of optimal biomedical scaffolds, which can be governed by topographical surface characteristics, such as size, shape, and direction. Of these properties, we focus on the effects of nano - to micro - sized hierarchical surface. To fabricate the hierarchical surface structure on poly(${\varepsilon}$-caprolactone) (PCL) film, we employed a nano/micro-casting technique (NCT) and modified plasma process. The micro size topography of PCL film was controlled by sizes of the micro structures on lotus leaf. Also, the nano-size topography and hydrophilicity of PCL film were controlled by modified plasma process. After the plasma treatment, the hydrophobic property of the PCL film was significantly changed into hydrophilic property, and the nano-sized structure was well developed, as increasing the plasma exposure time and applied power. The surface properties of the modified PCL film were investigated in terms of initial cell morphology, attachment, and proliferation using osteoblast-like-cells (MG63). In particular, initial cell attachment, proliferation and osteogenic differentiation in the hierarchical structure were enhanced dramatically compared to those of the smooth surface.

  • PDF

PSO-based Resource Allocation in Software-Defined Heterogeneous Cellular Networks

  • Gong, Wenrong;Pang, Lihua;Wang, Jing;Xia, Meng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.5
    • /
    • pp.2243-2257
    • /
    • 2019
  • A heterogeneous cellular network (HCN) is useful to increase the spectral and energy efficiency of wireless networks and to reduce the traffic load from the macro cell. The performance of the secondary user equipment (SUE) is affected by interference from the eNodeB (eNB) in a macro cell. To decrease the interference between the macro cell and the small cell, allocating resources properly is essential to an HCN. This study considers the scenario of a software-defined heterogeneous cellular network and performs the resource allocation process. First, we show the system model of HCN and formulate the optimization problem. The optimization problem is a complex process including power and frequency resource allocation, which imposes an extremely high complexity to the HCN. Therefore, a hierarchical resource allocation scheme is proposed, which including subchannel selection and a particle swarm optimization (PSO)-based power allocation algorithm. Simulation results show that the proposed hierarchical scheme is effective in improving the system capacity and energy efficiency.

Performance evaluation of LTE/LTE-A closed subscriber group femto-cell discovery (LTE/LTE-A 배타적 접속 펨토셀에 대한 검출 성능 평가)

  • Joo, Yang-Ick
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.4
    • /
    • pp.451-455
    • /
    • 2014
  • In LTE (Long Term Evolution)/LTE-A (Long Term Evolution-Advanced) networks, hierarchical macro/femto-cell structure is adopted to enhance system capacity. Such a femto-cell is deployed as a Closed Subscriber Group (CSG) eNB. However, the inbound handover to CSG cell experiences longer delay than normal handover because it spends more time detecting the associated CSG cells due to its sparse deployment. Most of all the legacy UEs (User Equipments) have been implemented without considering the inbound CSG handover. Accordingly, they may not meet the performance requirements on the cell discovery described in the LTE/LTE-A standards. Therefore, in this paper, the performance of the CSG femto-cell detection is evaluated using computer simulation. The evaluation results will provide a basis to tackle the latency problem of inbound CSG handover.

HALO : An Efficient Global Placement Strategy for Standard Cells (HALO : 효율적 표준셀 배치 알고리듬)

  • 양영일;경종민
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.26 no.10
    • /
    • pp.1598-1605
    • /
    • 1989
  • This paper describes an efficient global cell (module) placement strategy called HALO (Hierarchical Alternating Linear Ordering)which generates global 2-D placement of circuit modules by hierarchical application of linear ordering in alternating direction. We tried, in principle, to explain why HALO should perform better than other typical, somehat successful, analytical approaches such as min-cut, force-directed relaxation(FDR)or its likes. We have implemented HALO as a program for standard cell placement. Experimental results on two benchmark circuits, primary and primary 2 consisting of 752 and 2907 cells, respectively have shown a decrease of half-perimeter routing length by 7% and 24%, respectively compared to the best available results obtained so far. Total CPU time including the following detailed placement was less than half of the earlier work.

  • PDF

Linear Dynamic Model of Gene Regulation Network of Yeast Cell Cycle

  • Changno Yoon;Han, Seung-Kee
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 2003.06a
    • /
    • pp.77-77
    • /
    • 2003
  • Gene expression in a cell is regulated by mutual activations or repressions between genes. Identifying the gene regulation network will be one of the most important research topics in the post genomic era. We propose a linear dynamic model of gene regulation for the yeast cell cycle. A small gene network consisting of about 40 genes is reconstructed from the analysis of micro-array gene expression data of yeast S. cerevisiae published by P. Spellman et al. We show that the network construction is consistent with the result of the hierarchical cluster analysis.

  • PDF