• Title/Summary/Keyword: hidden node collision

Search Result 17, Processing Time 0.018 seconds

Group Node Contention Algorithm for Avoiding Continuous Collisions in LR-WPAN (무선 저속 PAN에서 연속된 충돌 회피를 위한 그룹 노드 경쟁 알고리즘)

  • Lee, Ju-Hyun;Yoo, Sang-Jo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.12B
    • /
    • pp.1066-1074
    • /
    • 2008
  • In this paper, we proposed an efficient algorithm using pulse signal based on group-node-contention in LR-WPAN. The purpose of IEEE 802.15.4 is low speed, low cost and low power consumption. Recently, as applications of LR-WPAN have been extended, there is a strong probability of collision as well and almost collision occurs because of hidden node problem. Moreover, if the collision continuously occurs due to hidden node collision, network performance could be decreased. Nowadays, although several papers focus on the hidden node collision, algorithms waste the channel resource if continuous collisions frequently occur. In this paper, we assume that PAN has been already formed groups, and by using pulse signal, coordinator allocates channel and orders, and then, nodes in the allocated group can compete each other. Hence, contention nodes are reduced significantly, channel wastage caused by collision is decreased, and data transmission rate is improving. Finally, this algorithm can protect the network from disruption caused by frequent collisions. Simulation shows that this algorithm can improve the performance.

Fast Retransmission Scheme for Overcoming Hidden Node Problem in IEEE 802.11 Networks

  • Jeon, Jung-Hwi;Kim, Chul-Min;Lee, Ki-Seok;Kim, Chee-Ha
    • Journal of Computing Science and Engineering
    • /
    • v.5 no.4
    • /
    • pp.324-330
    • /
    • 2011
  • To avoid collisions, IEEE 802.11 medium access control (MAC) uses predetermined inter-frame spaces and the random back-off process. However, the retransmission strategy of IEEE 802.11 MAC results in considerable time wastage. The hidden node problem is well known in wireless networks; it aggravates the consequences of time wastage for retransmission. Many collision prevention and recovery approaches have been proposed to solve the hidden node problem, but all of them have complex control overhead. In this paper, we propose a fast retransmission scheme as a recovery approach. The proposed scheme identifies collisions caused by hidden nodes and then allows retransmission without collision. Analysis and simulations show that the proposed scheme has greater throughput than request-to-send and clear-to-send (RTS/CTS) and a shorter average waiting time.

Evaluation of the Effects of a Grouping Algorithm on IEEE 802.15.4 Networks with Hidden Nodes

  • Um, Jin-Yeong;Ahn, Jong-Suk;Lee, Kang-Woo
    • Journal of Communications and Networks
    • /
    • v.16 no.1
    • /
    • pp.81-91
    • /
    • 2014
  • This paper proposes hidden-node aware grouping (HAG) algorithm to enhance the performance of institute of electrical and electronics engineers (IEEE) 802.15.4 networks when they undergo either severe collisions or frequent interferences by hidden nodes. According to the degree of measured collisions and interferences, HAG algorithm dynamically transforms IEEE 802.15.4 protocol between a contention algorithm and a contention-limited one. As a way to reduce the degree of contentions, it organizes nodes into some number of groups and assigns each group an exclusive per-group time slot during which only its member nodes compete to grab the channel. To eliminate harmful disruptions by hidden nodes, especially, it identifies hidden nodes by analyzing the received signal powers that each node reports and then places them into distinct groups. For load balancing, finally it flexibly adapts each per-group time according to the periodic average collision rate of each group. This paper also extends a conventional Markov chain model of IEEE 802.15.4 by including the deferment technique and a traffic source to more accurately evaluate the throughput of HAG algorithm under both saturated and unsaturated environments. This mathematical model and corresponding simulations predict with 6%discrepancy that HAG algorithm can improve the performance of the legacy IEEE 802.15.4 protocol, for example, even by 95% in a network that contains two hidden nodes, resulting in creation of three groups.

Adaptive Range-Based Collision Avoidance MAC Protocol in Wireless Full-duplex Ad Hoc Networks

  • Song, Yu;Qi, Wangdong;Cheng, Wenchi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.6
    • /
    • pp.3000-3022
    • /
    • 2019
  • Full-duplex (FD) technologies enable wireless nodes to simultaneously transmit and receive signal using the same frequency-band. The FD modes could improve their physical layer throughputs. However, in the wireless ad hoc networks, the FD communications also produce new interference risks. On the one hand, the interference ranges (IRs) of the nodes are enlarged when they work in the FD mode. On the other hand, for each FD pair, the FD communication may cause the potential hidden terminal problems to appear around the both sides. In this paper, to avoid the interference risks, we first model the IR of each node when it works in the FD mode, and then analyze the conditions to be satisfied among the transmission ranges (TRs), carrier-sensing ranges (CSRs), and IRs of the FD pair. Furthermore, in the media access control (MAC) layer, we propose a specific method and protocol for collision avoidance. Based on the modified Omnet++ simulator, we conduct the simulations to validate and evaluate the proposed FD MAC protocol, showing that it can reduce the collisions effectively. When the hidden terminal problem is serious, compared with the existing typical FD MAC protocol, our protocol can increase the system throughput by 80%~90%.

An Analytical Model for LR-WPAN Performance in the Presence of Hidden Nodes (은닉노드를 고려한 LR-WPAN 성능의 분석적 모델)

  • Lee, Kang-Woo;Shin, Youn-Soon;Hyun, Gyu-Wan;Ahn, Jong-Suk;Kim, Hie-Cheol
    • The KIPS Transactions:PartC
    • /
    • v.16C no.1
    • /
    • pp.133-142
    • /
    • 2009
  • This paper proposes an analytical performance model of IEEE 802.15.4 in the presence of hidden nodes. Conventional 802.15.4 mathematical models assume ideal situations where every node can detect the transmission signal of every other nodes different from the realistic environments. Since nodes can be randomly located in real environments so that some nodes' presence is hidden from other ones, this assumption leads to wrong performance evaluation of 802.15.4. For solving this problem, we develop an extended performance model which combines the traditional 802.15.4 performance model with one for accounting the presence of hidden nodes. The extended model predicts the rapid performance degradation of 802.15.4 due to the small number of hidden nodes. The performance, for example, degrades by 62% at maximum when 5% of the total nodes are hidden. These predictions are confirmed to be equal to those of ns-2 simulations by less than 6% difference.

Transient Coordinator: a Collision Resolution Algorithm for Asynchronous MAC Protocols in Wireless Sensor Networks

  • Lee, Sang Hoon;Park, Byung Joon;Choi, Lynn
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.12
    • /
    • pp.3152-3165
    • /
    • 2012
  • Wireless sensor networks (WSN) often employ asynchronous MAC scheduling, which allows each sensor node to wake up independently without synchronizing with its neighbor nodes. However, this asynchronous scheduling may not deal with collisions due to hidden terminals effectively. Although most of the existing asynchronous protocols exploit a random back-off technique to resolve collisions, the random back-off cannot secure a receiver from potentially repetitive collisions and may lead to a substantial increase in the packet latency. In this paper, we propose a new collision resolution algorithm called Transient Coordinator (TC) for asynchronous WSN MAC protocols. TC resolves a collision on demand by ordering senders' transmissions when a receiver detects a collision. To coordinate the transmission sequence both the receiver and the collided senders perform handshaking to collect the information and to derive a collision-free transmission sequence, which enables each sender to exclusively access the channel. According to the simulation results, our scheme can improve the average per-node throughput by up to 19.4% while it also reduces unnecessary energy consumption due to repetitive collisions by as much as 91.1% compared to the conventional asynchronous MAC protocols. This demonstrates that TC is more efficient in terms of performance, resource utilization, and energy compared to the random back-off scheme in dealing with collisions for asynchronous WSN MAC scheduling.

Medium Access Control Using Channel Reservation Scheme in Underwater Acoustic Sensor Networks (해양센서네트워크에서 채널예약방식을 이용한 매체접근제어)

  • Jang, Kil-Woong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.10B
    • /
    • pp.955-963
    • /
    • 2009
  • In this paper, we propose a medium access control(MAC) protocol for reducing the energy efficiency and for improving the transmission efficiency in underwater acoustic sensor networks. In underwater environment, the transmission delay is longer and bandwidth is smaller than terrestrial environment. Considering these points, we propose a new MAC protocol to enhance throughput and to manage efficiently the energy of nodes. The proposed protocol operates as a channel reservation scheme to decrease data collisions, and uses a mechanism to control the hidden node problem and the exposed node problem occurred in ad hoc networks. The proposed protocol consists of the slotted based transmission frame and reduces data collisions between nodes by putting separately the reservation period in the transmission frame. In addition, it is able to solve the hidden node problem and the exposed node problem by reservation information between nodes. We carry out the simulation to evaluate the proposed protocol in terms of the average energy consumption, the ratio of collision, throughput, and the average transmission delay, and compare the proposed protocol to a traditional MAC protocol in the underwater environment. The simulation results show that the proposed protocol outperforms the traditional protocol under a various of network parameters.

Analysis of Effects of Hidden Nodes and CCA Deferment Algorithm on IEEE 802.15.4 Performance Using ns-2 Simulator (ns-2 시뮬레이터를 이용한 은닉 노드와 CCA 지연 알고리즘이 IEEE 802.15.4 네트워크의 성능에 미치는 영향 분석)

  • Lee, Kang-Woo;Hyun, Gyu-Wan;Shin, Youn-Soon;Ahn, Jong-Suk
    • The KIPS Transactions:PartC
    • /
    • v.16C no.3
    • /
    • pp.393-406
    • /
    • 2009
  • This paper introduces two functions added to the current version of ns-2 simulator for better accuracy of IEEE 802.15.4 network simulations. The first one is to automatically place hidden nodes over the ring topology in which the coordinator is centered, when the number of hidden nodes and total number of nodes is given. Collisions of signals can be distinguished into the trace file according to the ways of participation of hidden nodes. The second one is the CCA deferment algorithm described in IEEE 802.15.4-2006 standard which is not implemented in the current version of ns-2. Owing to these additional functions, we can carry out the precise analysis of the performance effects of hidden nodes and CCA deferment algorithm on 802.15.4 networks. Simulation results present at least 66% of performance degradation in throughput and drastic increase of collision probability up to 90% from 65% by just a single hidden node. Besides, 2006 standard for CCA deferment algorithm gives 19% lower collision probability and 38% higher performance.

An Efficient Multi-Channel MAC Protocol for Cognitive Ad-hoc Networks with Idle Nodes Assistance (무선 인지 애드 혹 네트워크를 위한 휴지 노드를 활용하는 효율적인 다중 채널 MAC 프로토콜)

  • Gautam, Dinesh;Koo, In-Soo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.11 no.4
    • /
    • pp.39-45
    • /
    • 2011
  • In this paper, we propose an efficient multichannel MAC protocol with idle nodes assistance to avoid the multi-channel hidden terminal problem in cognitive radio ad hoc network and further to improve the performance of the network. The proposed MAC protocol can be applied to the cognitive radio adhoc network where every node is equipped with the single transceiver and one common control channel exists for control message negotiation. In the proposed protocol, the idle nodes available in the neighbour of communication nodes are utilized because the idle nodes have the information about the channels being utilized in their transmission range. Whenever the nodes are negotiating for the channel, idle nodes can help the transmitting and receiving nodes to select the free data channel for data transfer. With the proposed scheme, we can minimize the hidden terminal problem and decrease the collision between the secondary users when selecting the channel for data transfer. As a result, the performance of the network is increased.

An Exposed-Terminal-Eliminated Dual-Channel MAC Protocol for Exploiting Concurrent Transmissions in Multihop Wireless Networks

  • Liu, Kai;Zhang, Yupeng;Liu, Feng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.3
    • /
    • pp.778-798
    • /
    • 2014
  • This paper proposes a novel exposed-terminal-eliminated medium access control (ETE-MAC) protocol by combining channel reservation, collision avoidance and concurrent transmissions to improve multi-access performance of the multihop wireless networks. Based on the proposed slot scheduling scheme, each node senses the control channel (CCH) or the data channel (DCH) to accurately determine whether it can send or receive the corresponding packets without collisions. Slot reservation on the CCH can be simultaneously executed with data packet transmissions on the DCH. Therefore, it resolves the hidden-terminal type and the exposed-terminal type problems efficiently, and obtains more spatial reuse of channel resources. Concurrent packet transmissions without extra network overheads are maximized. An analytical model combining Markov model and M/G/1 queuing theory is proposed to analyze its performance. The performance comparison between analysis and simulation shows that the analytical model is highly accurate. Finally, simulation results show that, the proposed protocol obviously outperforms the link-directionality-based dual-channel MAC protocol (DCP) and WiFlex in terms of the network throughput and the average packet delay.