• 제목/요약/키워드: hidden Markov model

검색결과 641건 처리시간 0.025초

Hidden Markov Chain 모형과 이변량 코플라함수를 이용한 가뭄빈도분석 (Drought Frequency Analysis Using Hidden Markov Chain Model and Bivariate Copula Function)

  • 전시영;김용탁;권현한
    • 한국수자원학회논문집
    • /
    • 제48권12호
    • /
    • pp.969-979
    • /
    • 2015
  • 본 연구에서는 가뭄의 특성분석에 유리하며, 확률론적 접근이 가능한 은닉 마코프 모델(HMM) 기반의 가뭄 분석 기법을 적용하였다. HMM 기반의 가뭄의 심도뿐만 아니라 지속시간을 동시에 평가할 수 있도록 코플라 함수 기반의 이변량 가뭄빈도해석 기법을 도입하여 우리나라의 2015년 가뭄 빈도를 평가하였다. 가뭄빈도분석 결과 최근 40년 자료를 기준으로 영동지방에 비해 영서지방이 전체적으로 가뭄이 발생할 경우 가뭄의 심도가 큰 것으로 평가되었다. 심한가뭄의 발생 비율의 경우에 철원의 경우 10%를 상회하는 등 임진강 유역에서 상대적으로 심한가뭄의 발생비율이 크다는 것을 확인할 수 있었다. 한강유역 일부지점에서는 2014/2015년의 가뭄 지속기간 및 심도의 결합재현기간이 1,000년이 넘는 가뭄이 발생하고 있는 것으로 평가되었다. 특히 북한강 및 임진강 유역에 심한 가뭄이 발생하고 있으며 전반적으로 100년 이상의 기왕최대가뭄을 나타내고 있는 것으로 판단되었다.

HMM을 이용한 채팅 텍스트로부터의 화자 감정상태 분석 (Emotional States Recognition of Text Data Using Hidden Markov Models)

  • 문현구;장병탁
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2001년도 가을 학술발표논문집 Vol.28 No.2 (2)
    • /
    • pp.127-129
    • /
    • 2001
  • 입력된 문장을 분석하여 미리 정해진 범주에 따라 그 문장의 감정 상태의 천이를 출력해 주는 감정인식 시스템을 제안한다. Naive Bayes 알고리즘을 사용했던 이전 방법과 달리 새로 연구된 시스템은 Hidden Markov Model(HMM)을 사용한다. HMM은 특정 분포로 발생하는 현상에서 그 현상의 원인이 되는 상태의 천이를 찾아내는데 적합한 방법으로서, 하나의 문장에 여러 가지 감정이 표현된다는 가정 하에 감정인식에 관한 이상적인 알고리즘이라 할 수 있다. 본 논문에서는 HMM을 사용한 감정인식 시스템에 관한 개요를 설명하고 이전 버전에 비해 보다 향상된 실험결과를 보여준다.

  • PDF

HMM 을 이용한 얼굴 검출과 인식 (Face Detection And Recognition using Hidden Markov Models)

  • 박호석;차영석;최현수;배철수;권오홍;최철재;나상동
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2000년도 춘계종합학술대회
    • /
    • pp.336-341
    • /
    • 2000
  • Hidden Markov Model(HMM)을 기반으로 한 얼굴 검출과 얼굴 인식에 대한 프레임작업에 대한 것이다. 관찰 벡터는 Karhunen-Loves Transform(KLT)의 상관관계를 이용하여 얻은 HMM의 정역학 특성을 사용하였으며, 본 연구에서 보여준 얼굴인식 방법은 이전의 HMM 기반의 얼굴인식 방법에서 인식률을 약간 개선함으로써 컴퓨터 연산을 훨씬 간단히 할 수 있음을 보여준다

  • PDF

로그 우도 차이의 P-norm에 기반한 은닉 마르코프 파라미터 추정 알고리듬 (The p-Norm of Log-likelihood Difference Estimation Algorithm for Hidden Markov Models)

  • 윤성락;유창동
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2007년도 하계종합학술대회 논문집
    • /
    • pp.307-308
    • /
    • 2007
  • This paper proposes a discriminative training algorithm for estimating hidden Markov model (HMM) parameters. The proposed algorithm estimates the Parameters by minimizing the p-norm of log-likelihood difference (PLD) between the utterance probability given the correct transcription and the most competitive transcription.

  • PDF

HMM 부모델을 이용한 단어 인식에 관한 연구 (A Study on Word Recognition using sub-model based Hidden Markov Model)

  • 신원호
    • 한국음향학회:학술대회논문집
    • /
    • 한국음향학회 1994년도 제11회 음성통신 및 신호처리 워크샵 논문집 (SCAS 11권 1호)
    • /
    • pp.395-398
    • /
    • 1994
  • In this paper the word recognition using sub-model based Hidden Markov Model was studied. Phoneme models were composed of 61 phonemes in therms of Korean language pronunciation characteristic. Using this, word model was maded by serial concatenation. But, in case of this phoneme concatenation, the second and the third phoneme of syllable are overlapped in distribution at the same time. So considering this, the method that combines the second and the third phoneme to one model was proposed. And to prevent the increase in number of model, similar phonemes were combined to one, and finially, 57 models were created. In experiment proper model structure of sub-model was searched for, and recognition results were compared. So similar recognition results were maded, and overall recognition rates were increased in case of using parameter tying method.

  • PDF

자동차 운행 시뮬레이션에서 Hidden Markov Model을 이용한 운전자 감성인식 (Emotion Recognition by Hidden Markov Model at Driving Simulation)

  • 박희환;송성호;지용관;허건수;조동일;박장현
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.1958-1962
    • /
    • 2005
  • A driver's emotion is a very important factor of safe driving. This paper classified a driver's emotion into 3 major emotions, can be occur when driving a car: Surprise, Joy, Tired. And It evaluated the classifier using Hidden Markov Models, which have observation sequence as bio-signals. It used the 2-D emotional plane to classfiy a human's general emotion state. The 2-D emotional plane has 2 axes of pleasure-displeasure and arsual-relaxztion. The used bio-signals are Galvanic Skin Response(GSR) and Heart Rate Variability(HRV), which are easy to acquire and reliable. We classified several moving pictures into 3 major emotions to evaluate our HMM system. As a result of driving simulations for each emotional situations, we can get recognition rates of 67% for surprise, 58% for joy and 52% for tired.

  • PDF

신경회로망과 다중스케일 Bayesian 영상 분할 기법을 이용한 결 분할 (Texture segmentation using Neural Networks and multi-scale Bayesian image segmentation technique)

  • 김태형;엄일규;김유신
    • 대한전자공학회논문지SP
    • /
    • 제42권4호
    • /
    • pp.39-48
    • /
    • 2005
  • 본 논문에서는 Bayesian 추정법과 신경회로망을 이용한 새로운 결 분할 방법을 제안한다 신경회로망의 입력으로는 다중스케일을 가지는 웨이블릿 계수와 인접한 이웃 웨이블릿 계수들의 문맥정보를 사용하고, 신경회로망의 출력을 사후 확률로 모델링한다. 문맥정보는 HMT(Hidden Markov Tree) 모델을 이용하여 구한다. 제안 방법은 HMT를 이용한 ML(Maximum Likelihood) 분할 보다 더 우수한 결과를 보여준다. 또한 HMT를 이용한 결 분할 방법과 제안 방법을 이용한 결 분할 각각에 HMTseg라고 불리는 다중 스케일 Bayesian 영상 분할 기술을 이용하여 후처리를 행한 결 분할 또한 제안 방법이 우수함을 보여준다.

Analysis of Real-Time Estimation Method Based on Hidden Markov Models for Battery System States of Health

  • Piao, Changhao;Li, Zuncheng;Lu, Sheng;Jin, Zhekui;Cho, Chongdu
    • Journal of Power Electronics
    • /
    • 제16권1호
    • /
    • pp.217-226
    • /
    • 2016
  • A new method is proposed based on a hidden Markov model (HMM) to estimate and analyze battery states of health. Battery system health states are defined according to the relationship between internal resistance and lifetime of cells. The source data (terminal voltages and currents) can be obtained from vehicular battery models. A characteristic value extraction method is proposed for HMM. A recognition framework and testing datasets are built to test the estimation rates of different states. Test results show that the estimation rates achieved based on this method are above 90% under single conditions. The method achieves the same results under hybrid conditions. We can also use the HMMs that correspond to hybrid conditions to estimate the states under a single condition. Therefore, this method can achieve the purpose of the study in estimating battery life states. Only voltage and current are used in this method, thereby establishing its simplicity compared with other methods. The batteries can also be tested online, and the method can be used for online prediction.

연속분포 HMM을 이용한 한국어 연속 음성 인식 시스템 개발 (On the Development of a Continuous Speech Recognition System Using Continuous Hidden Markov Model for Korean Language)

  • 김도영;박용규;권오욱;은종관;박성현
    • 한국음향학회지
    • /
    • 제13권1호
    • /
    • pp.24-31
    • /
    • 1994
  • 본 논문에서는 연속분포 hidden Markov모델을 이용한 화자독립 연속 음성 인식 시스템에 관해 기술한다. 연속분포 모델은 평균과 분산 벡터로 구성되며 음성신호를 직접 모델링하여 양자화 왜곡이 없어진다. 특징벡터는 filter bank 계수 및 그 1, 2차 미분계수를 사용하여 음성신호의 동적 특성을 반영하였다. Segmental K-means 알고리즘을 이용하여 학습하였으며, 연속어 인식에서 가장 문제가 되는 조음화 현상으로 인한 인식률 저하를 막기 위해 앞뒤의 음소를 고려해주는 triphone을 인식단위로 사용하였다. Search 알고리즘으로는 시간 면에서 효율이 좋은 one-pass search 알고리즘을 사용하였다 성능 평가를 위한 회자 독립인식 실험에서 문법이 없을 경우 $83\%$, finite state network을 적용한 경우에는 $94\%$의 인식률을 나타내었다.

  • PDF

3차원 손 모델링 기반의 실시간 손 포즈 추적 및 손가락 동작 인식 (Real-Time Hand Pose Tracking and Finger Action Recognition Based on 3D Hand Modeling)

  • 석흥일;이지홍;이성환
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제35권12호
    • /
    • pp.780-788
    • /
    • 2008
  • 손 포즈 모델링 및 추적은 컴퓨터 시각 분야에서 어려운 문제로 알려져 있다. 손 포즈 3차원 복원을 위한 방법에는 사용되는 카메라의 수에 따라 다중 카메라 또는 스테레오 카메라 기반 방식과 단일카메라 기반 방식이 있다. 다중 카메라의 경우 여러 대의 카메라를 설치하거나 동기화를 시키는 등에 대한 제약사항이 따른다. 본 논문에서는 확률 그래프 모델에서 신뢰 전파 (Belief Propagation) 알고리즘을 이용하여 단안 카메라에서 획득된 2차원 입력 영상으로부터 3차원 손 포즈를 추정하는 방법을 제안한다. 또한, 은닉 마르코프 모델(Hidden Markov Model)을 인식기로 하여 손가락 클릭 동작을 인식한다. 은닉 노드로 손가락의 관절 정보를 표현하고, 2차원 입력 영상에서 추출된 특징을 관측 노드로 표현한 확률 그래프 모델을 정의한다. 3차원 손 포즈 추적을 위해 그래프 모델에서의 신뢰 전파 알고리즘을 이용한다. 신뢰 전파 알고리즘을 통해 3차원 손 포즈를 추정 및 복원하고, 복원된 포즈로부터 손가락의 움직임에 대한 특징을 추출한다. 추출된 정보는 은닉 마르코프 모델의 입력값이 된다. 손가락의 자연스러운 동작을 위해 본 논문에서는 한 손가락의 클릭 동작 인식에 여러 손가락의 움직임을 함께 고려한다. 제안한 방법을 가상 키패드 시스템에 적응한 결과 300개의 동영상 테스트 데이타에 대해 94.66%의 높은 인식률을 보였다.