• Title/Summary/Keyword: hexagonal

Search Result 1,318, Processing Time 0.036 seconds

Improved Magnetic Anisotropy of YMn1-$xCrxO_3 $ Compounds

  • Yoo, Y.J.;Park, J.S.;Kang, J.H.;Kim, J.;Lee, B.W.;Kim, K.W.;Lee, Y.P.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.218-218
    • /
    • 2012
  • Recently, hexagonal manganites have attracted much attention because of the coexistence of ferroelectricity and antiferromagnetic (AFM) order. The crystal structure of hexagonal manganites consists of $MnO_5$ polyhedra in which $Mn^{3+}$ ion is surrounded by three oxygen atoms in plane and two apical oxygen ions. The Mn ions within Mn-O plane form a triangular lattice and couple the spins through the AFM superexchange interaction. Due to incomplete AFM coupling between neighboring Mn ions in the triangular lattice, the system forms a geometrically-frustrated magnetic state. Among hexagonal manganites, $YMnO_3$, in particular, is the best known experimentally since the f states are empty. In addition, for applications, $YMnO_3$ thin films have been known as promising candidates for non-volatile ferroelectric random access memories. However, $YMnO_3$ has low magnetic order temperature (~70 K) and A-type AFM structure, which hinders its applications. We have synthesized $YMn1_{-x}Cr_xO_3$ (x = 0, 0.05 and 0.1) samples by the conventional solid-state reaction. The powders of stoichiometric proportions were mixed, and calcined at $900^{\circ}C$ for $YMn1_{-x}Cr_xO_3$ for 24 h. The obtained powders were ground, and pressed into 5-mm-thick disks of 1/2-inch diameter. The disks were directly put into the oven, and heated up to $1,300^{\circ}C$ and sintered in air for 24 h. The phase of samples was checked at room temperature by powder x-ray diffraction using a Rigaku Miniflex diffractometer with Cu $K{\alpha}$ radiation. All the magnetization measurements were carried out with a superconducting quantum-interference-device magnetometer. Our experiments point out that the Cr-doped samples show the characteristics of a spin-glass state at low temperatures.

  • PDF

Prediction of Shielding Effectiveness in Honeycomb Structure Using the Modified Design Equation (수정된 설계 방정식을 이용한 허니컴 구조의 차폐 효과 예측)

  • Lee Kyung-Won;Cheong Yeong-Chul;Hong Ic-Pyo;Yook Jong-Gwan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.16 no.9 s.100
    • /
    • pp.862-871
    • /
    • 2005
  • In this paper, the modified design equation of shielding effectiveness was presented to predict more accurately the shielding effectiveness of honeycomb structure with hexagonal waveguide. The design equation of shielding effectiveness in honeycomb was represented from adding shielding effectiveness of single lattice to shielding effectiveness of infinite array of single lattice. This paper proposed the generalized design equation of shielding effectiveness by analyzing basis lattice of hexagonal waveguide which composes honeycomb structure and infinite array structure of basis lattice. To provide the validity of the modified design equation of shielding effectiveness in this paper, comparison with other available date using 3D EM commercial software is made.

Microstructure and Microwave Dielectric Properties of (1-x) Ba (Co1/3Nb2/3)O3-zBa(Zn1/3Nb2/3)O3 Ceramics

  • Ahn, Byung-Guk;Ahn, Cheol-Woo;Nahm, Sahn;Lee, Hwack-Joo
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.4
    • /
    • pp.333-339
    • /
    • 2003
  • Ba (Co$_{1}$ 3/Nb$_{2}$ 3/)O$_3$(BCN) has a 1:2 ordered hexagonal structure. Q-value of BCN increased with increasing sintering temperature however, it significantly decreased when the sintering temperature exceeded 140$0^{\circ}C$ Ba (Co$_{1}$ 3/Nb$_{2}$ 3/)O$_3$(BZN) has the 1:2 ordered hexagonal structure and the degree of the 1 : 2 ordering decreased with the increase of the sintering temperature. The Q value of the BZN increased with increasing the sintering temperature and BZN sintered at 140$0^{\circ}C$ for 6h has a maximum Q-value. For (1-x) Ba (Co$_{1}$ 3/Nb$_{2}$ 3/)O$_3$-zBa(Zn$_{1}$ 3/Nb$_{2}$ 3/)O$_3$[(1-x)BCN-xBZN] ceramics the 1:2 ordered hexagonal structure was observed in the specimens with x$\leq$0.3 and the BaNb$_{6}$ O$^{16}$ second phase was found in the specimens with x$\geq$0.6. Grain Growth, which is rotated to the BaNb$_{6}$ O$^{16}$ second phase occurred in the specimens with x$\geq$ 0.5. In this work, the excellent microwave dielectric properties of $\tau$r=0.0 ppm/$^{\circ}C$$\varepsilon$r=34.5 and Q,$\times$f=97000GHz sere obtained for the 0.7BCV-0.3BZN ceramics sintered at 1400$0^{\circ}C$ for 20h.

Mechanism Improvement of the Heat Exchanger for the Thermal Efficiency Increase of Hot Air Heater (온풍난방기의 열효율 증대를 위한 열교환기 구조개선)

  • Kang, Geum-Choon;Kang, Yoen-Ku;Ryou, Young-Sun;Kim, Young-Joong;Lee, Si-Young;Paek, Yee
    • Journal of Biosystems Engineering
    • /
    • v.34 no.5
    • /
    • pp.363-370
    • /
    • 2009
  • Hot air heater with light oil combustion is used as the most common heater for greenhouse heating in the winter season. Hot air heaters of 256,246 units have been supplied as main greenhouse heating equipment until 2008 and greenhouse heating cost has reached to 620 billions won in Korea. In order to improve the thermal efficiency of the hot air heater and to reduce the expenses for greenhouse heating, prototype hot air heater was manufactured and tested in this experiment. The heat exchanger of tested prototype hot air heater was circular and hexagonal pipe type and inline and stagger arrangement type. Capacity of the heating was 43,062 kJ/h and total heat transfer area of the heat exchanger was $10.728\;m^2$. According to the performance test, it could supply heat of 38,240 to 35,100 kJ/h depending on the fan motor speed of 1,740~1,220 rpm, respectively. Thermal efficiency of hot air heater was 87.0% to 80.8% in the same conditions. As a result, thermal efficiency of hot air heater with hexagonal pipe-stagger arrangement heat exchanger developed in this study was higher 10.2% than that of conventional hot air heater and heating energy saving rate of 14.3% increased.

Synthesis of free-standing ZnO/Zn core-shell micro-polyhedrons using thermal chemical vapor deposition (열화학기상증착법을 이용한 프리스탠딩 ZnO/Zn 코어셀 마이크로 다면체 구조물의 합성)

  • Choi, Min-Yeol;Park, Hyun-Kyu;Jeong, Soon-Wook;Kim, Sang-Woo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.18 no.4
    • /
    • pp.155-159
    • /
    • 2008
  • In this work, we report synthesis of free-standing ZnO/Zn core-shell micro-polyhedrons using metal Zn pellets as a source material by the thermal chemical vapor deposition process. Scanning and transmission electron microscopy measurements were introduced to investigate morphologies and structural properties of as-grown ZnO/Zn core-shell micro-polyhedrons. It was found that micro-polyhedrons were composed of inner single-crystalline metal Zn surrounded by single-crystalline ZnO nanorod arrays. The inner single crystalline metal Zn with micro-scale diameter has a hexagonal crystal structure. Diameter and height of ZnO nanorods covering the metal Zn surface are below 10 nm and 100 nm, respectively. It was also confirmed that c-axis oriented ZnO nanorods are single crystalline with a hexagonal crystal structure.

A Fast Block Matching Algorithm using Unit-Diamond and Flat-Hexagonal Search Patterns (단위 다이아몬드와 납작한 육각패턴을 이용한 고속 블록 정합 알고리즘)

  • 남현우;위영철;김하진
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.10 no.1
    • /
    • pp.57-65
    • /
    • 2004
  • In the block matching algorithm, search patterns of different shapes or sizes and the distribution of motion vectors have a large impact on both the searching speed and the image quality. In this paper, we propose a new fast block matching algorithm using the unit-diamond search pattern and the flat-hexagon search pattern. Our algorithm first finds the motion vectors that are close to the center of search window using the unit-diamond search pattern, and then fastly finds the other motion vectors that are not close to the center of search window using the flat-hexagon search pattern. Through experiments, compared with the hexagon-based search algorithm(HEXBS), the proposed unit-diamond and flat-hexagonal pattern search algorithm(UDFHS) improves as high as 11∼51% in terms of average number of search point per motion vector estimation and improves about 0.05∼0.74㏈ in terms of PSNR(Peak Signal to Noise Ratio).

Effects of Anisotropic Fiber Packing on Stresses in Composites (이방성 섬유의 배열이 복합재료의 응력에 미치는 영향)

  • Lee, Jung-Ki;Lee, Hyeong-Min
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.9
    • /
    • pp.1284-1296
    • /
    • 2004
  • In order to investigate effects of anisotropic fiber packing on stresses in composites, a Volume Integral Equation Method is applied to calculate the elastostatic field in an unbounded isotropic elastic medium containing multiple orthotropic inclusions subject to remote loading, and a Mixed Volume and Boundary Integral Equation Method is introduced for the solution of elastostatic problems in unbounded isotropic materials containing multiple anisotropic inclusions as well as one void under uniform remote loading. A detailed analysis of stress fields at the interface between the isotropic matrix and the central orthotropic inclusion is carried out for square, hexagonal and random packing of orthotropic cylindrical inclusions, respectively. Also, an analysis of stress fields at the interface between the isotropic matrix and the central orthotropic inclusion is carried out, when it is assumed that a void is replaced with one inclusion adjacent to the central inclusion of square, hexagonal and random packing of orthotropic cylindrical inclusions, respectively, due to manufacturing and/or service induced defects. The effects of random orthotropic fiber packing on stresses at the interface between the isotropic matrix and the central orthotropic inclusion are compared with the influences of square and hexagonal orthotropic fiber packing on stresses. Through the analysis of plane elastostatic problems in unbounded isotropic matrix with multiple orthotropic inclusions and one void, it will be established that these new methods are very accurate and effective for investigating effects of general anisotropic fiber packing on stresses in composites.

First-principles Study of Graphene/Hexagonal Boron Nitride Stacked Layer with Intercalated Atoms

  • Sung, Dongchul;Kim, Gunn;Hong, Suklyun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.185.2-185.2
    • /
    • 2014
  • We have studied the atomic and electronic structure of graphene nanoribbons (GNRs) on a hexagonal boron nitride (h-BN) sheet with intercalated atoms using first-principles calculations. The h-BN sheet is an insulator with the band gap about 6 eV and then it may a good candidate as a supporting dielectric substrate for graphene-based nanodevices. Especially, the h-BN sheet has the similar bond structure as graphene with a slightly longer lattice constant. For the computation, we use the Vienna ab initio simulation package (VASP). The generalized gradient approximation (GGA) in the form of the PBE-type parameterization is employed. The ions are described via the projector augmented wave potentials, and the cutoff energy for the plane-wave basis is set to 400 eV. To include weak van der Waals (vdW) interactions, we adopt the Grimme's DFT-D2 vdW correction based on a semi-empirical GGA-type theory. Our calculations reveal that the localized states appear at the zigzag edge of the GNR on the h-BN sheet due to the flat band of the zigzag edge at the Fermi level and the localized states rapidly decay into the bulk. The open-edged graphene with a large corrugation allows some space between graphene and h-BN sheet. Therefore, atoms or molecules can be intercalated between them. We have considered various types of atoms for intercalation. The atoms are initially placed at the edge of the GNR or inserted in between GNR and h-BN sheet to find the effect of intercalated atoms on the atomic and electronic structure of graphene. We find that the impurity atoms at the edge of GNR are more stable than in between GNR and h-BN sheet for all cases considered. The nickel atom has the lowest energy difference of ~0.2 eV, which means that it is relatively easy to intercalate the Ni atom in this structure. Finally, the magnetic properties of intercalated atoms between GNR and h-BN sheet are investigated.

  • PDF

Characterization and Pore Structure of Ordered Mesoporous SBA-15 Silica by Aging Condition (숙성조건 의한 메조포러스 SBA-15 실리카의 기공구조와 특성)

  • Kim, Han-Ho;Park, Hyun;Kim, Kyung-Nam
    • Korean Journal of Materials Research
    • /
    • v.20 no.5
    • /
    • pp.252-256
    • /
    • 2010
  • The study was done to change the morphology and pore size of SBA-15 silica, and the characteristics of SBA-15 silica were investigated with TG-DSC, XRD, SEM, TEM and N2 adsorption-desorption under changing aging conditions. SBA-15 silica having a 2D-hexagonal structure was synthesized and confirmed by SEM and TEM. The structure of mesoporus silica SBA-15 showed a pore having regularly formed hexagonal structure and a passage having a cylindrical shape. This result is in good agreement with the pore forming in XRD and cylindrical shape of the structure in $N_2$ adsorption-desorption isotherm. SBA-15 silica showed a large BET surface area of $603-698\;m^2/g$, a pore volume of $0.673-0.926\;cm^3/g$, a large pore diameter of 5.62-7.42 nm, and a thick pore wall of 3.31-4.37 nm. This result shows that as the aging temperature increases, the BET surface area, pore volume, and pore diameter increase but the pore wall thickness decreases. The BET surface areas in SM-2 and SM-3 are as large as $698\;m^2/g$. However, SM-2 has a large surface area and forms a thick pore wall, when the aging temperature is $100^{\circ}C$ and is synthesized into stable mesoporous SBA-15 silica.

STM Study of Low Dimensional Nanostructures Formed by Adsorption of Dipyrromethane-trimer Molecules on Graphite Surface (흑연 표면에 형성된 dipyrromethene-trimer 분자의 저차원 나노구조의 주사 터널링 현미경 연구)

  • Son, S.B.;Lee, S.J.;Hahn, J.R.;Shin, J.Y.;Dolphin, D.
    • Journal of the Korean Vacuum Society
    • /
    • v.17 no.5
    • /
    • pp.375-380
    • /
    • 2008
  • We have investigated the low-dimensional nanostructures produced by adsorption of triangular Co coplexed dipyrromethane(DPM-trimer, Fig. 1) on graphite surface by using scanning tunneling microscope. DPM-trimer deposition on the graphite surface leads to the formation of long 1-D molecular wires and 2-D hexagonal patterns. We analyzed the heights and structures of 1-D molecular wires and 2-D hexagonal patterns. The 1-D molecular wires were formed 'edge-on' alignments on graphite surface result of continuos $\pi-\pi$ stacking interactions. The other case of 2-D hexagonal patterns were formed 'face-on' alignments on graphite surface.