본 논문에서는 확률적 보상과 유효성을 갖고, 매 시간 유효한 arm들의 집합이 변하는 sleeping bandit 문제를 해결하는 다수의 전략들의 집합 ${\Phi}$가 주어졌을 때, 이들을 융합하는 문제를 고려하고, 이 문제를 해결하기 위한 융합 알고리즘 sleepComb(${\Phi}$)를 제안한다. 제안된 알고리즘인 sleepComb(${\Phi}$)는 확률적(stochastic) multi-armed bandit 문제를 해결하는 매개변수 기반 휴리스틱으로 잘 알려진 ${\epsilon}_t$-greedy의 확률적 스위칭 기법을 바탕으로 매 시간 적절한 전략을 선택하는 알고리즘이다. 시퀀스 {${\epsilon}_t$}와 전략들에 대한 적절한 조건이 주어졌을 때, 알고리즘 sleepComb(${\Phi}$)는 sleeping bandit 문제에 대해 적절히 정의된 "best" 전략으로 수렴한다. 실험을 통해 이 알고리즘이 "best" 전략으로 수렴한다는 사실을 확인하고, 기존의 다른 융합 알고리즘보다 "best" 전략으로 더 빠르게 수렴함과 "best" 전략을 선택하는 비율이 더 높음을 보인다.
본 논문에서 다중 공유 링크들을 가진 스위치를 위한 세션할당 알고리즘을 제안한다. 제안 알고리즘은 서비스 클래스들에게 사전에 예약된 대역폭을 보장하고, 동일한 서비스 클래스에 속한 세션들에게는 서로 다른 공유 링크를 통해 전송되어도 가능한 비슷한 지연을 제공하고자 한다. 이러한 QoS를 제공하기 위해 다중 공유 링크를 위한 새로운 스케줄링 모델을 정의하고, 이를 기반으로 새로운 세션의 연결 설정 시 이를 어떤 공유 링크에 할당할 것인지를 결정하는 경험적 세션할당 알고리즘을 제안한다. 제안된 알고리즘은 새로운 세션이 소속된 서비스 클래스의 각 링크에 할당된 세션들의 예측된 지연들 중 가장 작은 예측 지연을 가진 링크에게 새로운 세션을 할당한다. 모의실험을 통해 제안 알고리즘을 채택한 스위치가 다른 세션할당 알고리즘을 채택한 스위치에 비해 서비스 클래스들에게 보다 공정한 대역폭을 할당하고 높은 패킷 처리율을 제공하며 예약된 대역폭을 보다 확실히 제공한다는 것을 확인할 수 있었다. 또한 동일한 서비스 클래스의 세션들에게 보다 비슷한 서비스 지연을 제공한다는 것도 확인했다.
이 논문에서는 컴퓨터 시스템을 이질적 서버들로 구성된 시스템으로 간주하고, 장기적 관점에서 응용들간의 공정성을 추구하는 누적적(累積的) 공정 스케줄링 방법을 제시한다. 기존의 단일 서버 환경에서 주로 사용되는 GPS(generalized processor sharing) 기반의 스케줄링 알고리즘들은 순간적 관점에서 서버의 용량을 분배한다. 그러나 이를 이질적 다중 서버 환경에 적용하는 경우, 스케줄링 순서에 의한 지연시간의 오차가 서버들을 거치면서 누적될 수 있고, 잉여용량이 순간적 관점에서만 배분되기 때문에 장기적 관점에서 불공정성 문제가 발생할 수 있다. 본 논문의 방법에서는 각 응용의 예약용량을 보장하면서 잉여용량의 적절한 배분을 통해 장기적 관점의 공정 서비스를 추구한다. 이를 위해, 각 응용이 이상적으로 진행되기 위해 받아야 할 공정한 서비스 용량을 주기적 관찰을 통해 동적으로 파악하여 참조용량 모델로 삼고, 스케줄러는 응용들이 이 참조용량 모델을 점진적으로 따르도록 한다. 또한 이 모델을 효율적으로 구현하기 위한 휴리스틱 알고리즘을 만들고 실험을 통해 이를 검토한다.
데이터로부터 학습하여 룰을 추출하는 귀납적 학습기법은 데이터 마이닝의 주요 도구 중 하나이다. 귀납적 학습 기법은 불필요한 변수나 잡음이 섞인 변수를 포함하여 학습하는 경우 생성된 룰의 예측 성능이 떨어지고 불필요하게 룰이 복잡하게 구성될 수 있다. 따라서 귀납적 학습 기법의 예측력을 높이고 룰의 구성도 간단하게 할 수 있는 주요 변수 부분집합을 선정하는 방안이 필요하다. 귀납적 학습에서 예측력을 높이기 위해 많이 사용되는 부분집합 선정을 위한 포장 기법은 최적의 부분집합을 찾기 위해 전체 부분집합을 탐색한다. 이때 전체 변수의 수가 많아지면 부분집합의 탐색 공간이 너무 커져서 탐색하기 어려운 문제가 된다. 본 연구에서는 포장 기법에 신경망 민감도 분석을 결합한 귀납적 학습 기법의 변수 부분집합 선정 방안을 제시한다. 먼저, 신경망의 민감도 분석 기법을 이용하여 전체 변수를 중요도 순으로 순서화 한다. 다음에 순서화된 정보를 이용하여 귀납적 학습 기법의 예측력을 높일 수 있는 부분집합을 찾아 나간다. 제안된 방법을 세 데이터 셋에 적용한 결과 일정한 반복 회수 이내에 예측력이 향상된 부분집합을 얻을 수 있음을 볼 수 있다.
본 논문은 마이크로 그리드 최적 운영을 위해 Differential Search (DS) 알고리즘을 적용하였다. DS 알고리즘은 이주하는 생물의 유사 브라운 운동 형태의 임의보행 (random-walk)을 모의하여 개발된 알고리즘이다. DS 알고리즘은 다른 최적화 알고리즘과 달리 한 개 이상의 개체를 동시에 사용 할 수 있고, 유사 최적해중에서 전역 최적 해를 선별하는 직진성 특성으로 multi-modal 함수들의 해법을 위한 성공적인 탐색 전력을 지니고 있으며, 높은 비선형성과 불연속성을 갖는 전력계통의 다른 분야에도 효율적으로 적용될 수 있다. 마이크로 그리드 시스템은 풍력 발전기, 디젤발전기, 연로전지 및 태양광 발전기로 구성된다. 풍력 발전기는 가변 출력특성을 이용하여 모델링 하였다. 연료비용과 연료가 전력으로 변환되는 경우의 효율을 포함시켜 시스템의 비용을 최소화 하였으며, 마이크로 그리드 단독 운용에 관해서만 분석하였다. 본 연구는 신재생 에너지원 기반의 마이크로 그리드의 최적 운영에 대해 코딩의 단순성, 빠른 수렴 속도, 정확성 및 효율성을 갖춘 DS 알고리즘을 적용하여 다른 알고리즘의 최적 값과 비교하였다.
소프트웨어 정의 네트워크는 네트워크 제어 기능을 데이터 전송 기능으로부터 물리적으로 분리하여 소프트웨어적으로 구현한다. 광범위한 지역으로 소프트웨어 정의 네트워크를 설치하기 위해서는 다중의 제어기가 요구되며, 제어기의 배치는 소프트웨어 정의 네트워크 성능에 중요한 영향을 미친다. 본 논문에서는 소프트웨어 정의 네트워크에서 효율적인 제어기 배치를 위한 메타 휴리스틱 알고리즘인 타부 서치 알고리즘을 제안한다. 보다 좋은 결과를 효과적으로 얻기 위해 새로운 타부 서치의 이웃해 생성 방식을 제안한다. 제안된 알고리즘은 소프트웨어 정의 네트워크에서 최소 전송지연과 실행속도 관점에서 성능을 평가하며, 유전 알고리즘 및 랜덤방법과 비교하여 제안된 알고리즘의 성능이 우수함을 보인다.
본 논문에서는 종래의 PSO 알고리즘 성능저하의 주요 원인들 중 하나인 입자들의 조기수렴 현상을 개선한 DPSO-QI (Distributed PSO with quantum-infusion mechanism) 기법을 제안한다. DPSO-QI 알고리즘은 다음과 같은 두 가지 특징을 지닌다. 첫째, 분산형 구조의 PSO 기법을 도입한다. 이는 먼저 적절한 수의 입자들로 소그룹을 형성하고, 최적해 탐색에 필요한 다양한 정보의 교환이 각 소그룹 내에서만 이루어지도록 한 기법이다. 이러한 기법을 바탕으로 입자들의 탐색 다양성을 증대시킴으로서 조기수렴 현상을 감소시키는 효과를 달성할 수 있다. 둘째, 상기의 입자 소그룹에 Quantum-infusion (QI) 메커니즘에 기반 한 기법을 도입시킨다. 이를 통해 입자들의 전역 최적해 탐색 정밀도를 보다 향상시킬 수 있다. 끝으로 다양한 수치예제를 통하여 제안하는 새로운 PSO 기법이 종래의 방식들에 비해 매우 뛰어난 성능을 구현할 수 있음을 입증하고자 한다.
본 논문은 운전금지영역을 가진 이차 볼록 발전비용 함수를 적용하는 경제급전의 최적화 문제에 대한 결정론적 최적화 알고리즘을 제안하였다. 제안된 알고리즘은 운전금지구역을 가진 발전기는 운전금지구역을 벗어나도록 분할하고, 초기치 $P_i{\leftarrow}P_i^{max}$에 대해 발전단가가 큰 순서대로 발전량을 감소시키고, $_{max}\{F(P_i)-F(P_i-{\beta})\}$ > $_{min}\{F(P_j+{\beta})-F(P_j)\}$, $i{\neq}j$, ${\beta}=1.0,0.1,0.01,0.001$에 대해 $P_i{\leftarrow}P_i-{\beta}$, $P_j{\leftarrow}P_j+{\beta}$의 교환 최적화 과정을 수행하였다. 제안된 방법을 15-발전기의 3가지 사례에 적용한 결과 간단하면서도 항상 동일한 결과로 휴리스틱 알고리즘들에 비해 최적의 결과를 나타내었다.
본 논문은 상위레벨에서 VHDL을 사용하여 순차회로의 주요 구성요소인 플립플롭을 모델링하는 방법과 고장을 검출하기 위한 테스트생성 알고리즘을 제안 한다. RS, JK, D, T플립플롭은 데이터 흐름형을 이용하여 모델링한다. 칩레벨 모델의 기본 구조인 마이크로 오퍼레이션 시이퀸스를 하나 이상의 다른 마이크로 오퍼레이션 사이퀸스에 연결된 제어점으로 나타낸다. 다른 마이크로 오퍼레이션을 제한하고 있는 마이크로 오퍼레이션고 장(FMOP고장)을 효과적으로 나타내기 위하여 고울트리의 개념을 사용하며 고울을 처리하기 위해서 휴리스틱 조건을 이용한다. FMOP나 제어점 고장(FCON)이 발생 할때 고장 활성화, 경로 활성화 및 활성화된 경로를 유지하기 위한 명료화과정을 거쳐 테스트 패턴을 생성 제안한 알고리즘을 C 언어로 실현하고 예제를 통하여 유효성을 확인 한다.
본 논문에서 파장 분할 다중화(WDM) 방식을 이용한 광 네트워크상의 라우팅과 파장할당 알고리즘을 고찰해 보겠다. 선형 프로그래밍(Linear Programming)과 그래프 컬러링(Graph Coloring)의 조합으로 이루어진 기존의 RWA기법들은 복잡하며, 발견적 방법(Heuristic Method) 사용이 요구된다. 이와 같은 방법은 실행시간이 길며, 최악의 경우에는 실행이 불가능하여 결과를 얻지 못한다. RWA를 해결하기 위한 다른 방법은 최대 EDPs(Edge Disjoint Paths)를 얻기 위해 greedy algorithm을 적용하는 것이다. 이것은 실행시간이 짧지만 파장의 수를 최적으로 사용하지 못한다. 본 논문에서 최대의 EDPs를 얻기 위해서 최대 흐름 기법(Maximum Flow Technique)을 이용한 새로운 알고리즘을 제안한다. 그리고 제안한 알고리즘과 기존에 제시된 최대 EDPs 알고리즘을 비교해 보겠다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.