Abstract
This paper considers the problem of combining multiple strategies for solving sleeping bandit problems with stochastic rewards and stochastic availability. It also proposes an algorithm, called sleepComb(${\Phi}$), the idea of which is to select an appropriate strategy for each time step based on ${\epsilon}_t$-probabilistic switching. ${\epsilon}_t$-probabilistic switching is used in a well-known parameter-based heuristic ${\epsilon}_t$-greedy strategy. The algorithm also converges to the "best" strategy properly defined on the sleeping bandit problem. In the experimental results, it is shown that sleepComb(${\Phi}$) has convergence, and it converges to the "best" strategy rapidly compared to other combining algorithms. Also, we can see that it chooses the "best" strategy more frequently.
본 논문에서는 확률적 보상과 유효성을 갖고, 매 시간 유효한 arm들의 집합이 변하는 sleeping bandit 문제를 해결하는 다수의 전략들의 집합 ${\Phi}$가 주어졌을 때, 이들을 융합하는 문제를 고려하고, 이 문제를 해결하기 위한 융합 알고리즘 sleepComb(${\Phi}$)를 제안한다. 제안된 알고리즘인 sleepComb(${\Phi}$)는 확률적(stochastic) multi-armed bandit 문제를 해결하는 매개변수 기반 휴리스틱으로 잘 알려진 ${\epsilon}_t$-greedy의 확률적 스위칭 기법을 바탕으로 매 시간 적절한 전략을 선택하는 알고리즘이다. 시퀀스 {${\epsilon}_t$}와 전략들에 대한 적절한 조건이 주어졌을 때, 알고리즘 sleepComb(${\Phi}$)는 sleeping bandit 문제에 대해 적절히 정의된 "best" 전략으로 수렴한다. 실험을 통해 이 알고리즘이 "best" 전략으로 수렴한다는 사실을 확인하고, 기존의 다른 융합 알고리즘보다 "best" 전략으로 더 빠르게 수렴함과 "best" 전략을 선택하는 비율이 더 높음을 보인다.