• 제목/요약/키워드: heterozygosity

검색결과 384건 처리시간 0.027초

Estimation of the Cumulative Power of Discrimination in Haimen Chicken Populations with Ten Microsatellite Markers

  • Olowofeso, O.;Wang, J.Y.;Shen, J.C.;Chen, K.W.;Sheng, H.W.;Zhang, P.;Wu, R.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제18권8호
    • /
    • pp.1066-1070
    • /
    • 2005
  • To estimate the cumulative power of discrimination (CPD) existing within Haimen chicken populations in China, we isolated a total of 252 genomic DNAs from four chicken populations (Rugao, Jiangchun, Wan-Nan and Cshiqishi) through a saturated salt procedure. All the genomic DNAs were used in a polymerase chain reaction (PCR) with ten microsatellite markers. Amplified PCR-products with the selected markers were separated on a 12% polyacrylamide gel with pBR322DNA/MspI used as internal standard marker. Genetic diversity indices including mean allele number among loci, unbiased heterozygosity ($h_i$) within locus, effective number of alleles ($N_e$) and polymorphism information content (PIC) as well as the unbiased average heterozygosity (H) among loci in the populations were calculated using the generated allele frequencies by each marker. The mean allele number for all loci ranged between 4.00${\pm}$0.33 (Rugao) to 4.90${\pm}$0.48 (Cshiqishi) and across populations for all loci was 4.60${\pm}$0.20, while (H) ranged from 0.65${\pm}$0.03 (Rugao) to 0.69${\pm}$0.03 (Jiangchun) among loci and across populations, (H) was 0.67${\pm}$0.01. The generated unbiased average heterozygosity among loci in each population was integrated to the global formula of CPD and the result demonstrated that the CPD within the four Haimen chicken populations was 98.75%.

Forensic Characterization of Four New Bovine Tri-nucleotide Microsatellite Markers in Korean Cattle (Hanwoo)

  • Sim, Yong Teak;Na, Jong Gil;Lee, Chul-Sang
    • Journal of Animal Science and Technology
    • /
    • 제55권2호
    • /
    • pp.87-93
    • /
    • 2013
  • We identified four new bovine tri-nucleotide microsatellite loci and analyzed their sequence structures and genetic parameters in 105 randomly selected Korean cattle (Hanwoo). Allele numbers of the loci B17S0808, B15S6253, B8S7996, and B17S4998 were 10, 11, 12, and 29, respectively. These alleles contained a simple or compound repeat sequences with some variations. Allele distributions of all these loci were in Hardy-Weinberg equilibrium (P > 0.05). Observed heterozygosity and expected heterozygosity ranged from 0.54 (B15S6253) to 0.92 (B17S4998) and from 0.599 (B15S6253) to 0.968 (B17S4998), respectively, and two measures of heterozygosity at each locus were highly correlated. Polymorphism information content (PIC) for these 4 loci ranged from 0.551 (B15S6253) to 0.932 (B17S4998), which means that all these loci are highly informative (PIC > 0.5). Other genetic parameters, power of discrimination (PD) and probability of exclusion (PE) ranged from 0.783 (B15S6253) to 0.984 (B17S4998) and from 0.210 (B15S6253) to 0.782 (B17S4998), respectively. Their combined PD and PE values were 0.9999968 and 0.98005176, respectively. Capillary electrophoresis revealed that average peak height ratio for a stutter was 13.89% at B17S0808, 26.67% at B15S6253, 9.09% at B8S7996, and 43.75% at B17S4998. Although the degree of genetic variability of the locus B15S6253 was relatively low among these four microsatellite markers, their favorable parameters and low peak height ratios for stutters indicate that these four new tri-nucleotide microsatellite loci could be useful multiplex PCR markers for the forensic and population genetic studies in cattle including Korean native breed.

대장암에서 17, 18번 염색체의 이형접합성 소실 (Loss of Heterozygosity (LOH) on 17th and 18th Chromosome from Colorectal Carcinoma)

  • 이재식
    • 대한임상검사과학회지
    • /
    • 제40권1호
    • /
    • pp.41-47
    • /
    • 2008
  • Colorectal carcinoma is occurred frequently to Korean and so ranked the fourth from various cancers. Due to western dietary life, this cancer has been increased continually. Therefore, the study will be needed to find a candidate gene involved in the development and progression of colorectal carcinoma and to diagnose and treatment helpfully. The striking feature from cancer suppressor genes is known for LOH (loss of heterozygosity), which is the method to find allele genetic loss or mutation of cancer cell. The purpose of this study was designed to find a carcinogenic gene from colon cancer using microsatellite marker on 17th and 18th chromosome from 30 subjects. The LOH was investigated in order of D18S59 57% (17/30), TP53CA 50% (15/30), D18S68 47% (14/30), D18S69 43% (13/30). The genetic mutation depends on loci of colorectal carcinoma was shown higher with 2.44 from colon cancer than with 1.25 from right colorectal carcinoma (p<0.032). The genetic mutation with lymph nodes was investigated higher with 2.69 at mutated group than with 1.14 at non-mutated group (p<0.003). At genetic mutated pattern depends on disease stage, there was higher significant difference at III-IV stage 2.50 than that of I-II stage 1.17, respectively (p=0.015). There was no difference at comparison between histological classification and serological CEA increase. The loss on 18q21 found in this study is highly recurrence loci and was observed 43% for Korean with high recurrence. Therefore, LOH is a very useful tool to detect 18q21 loci in clinical application, prior to the treatment of colorectal carcinoma. After the operation of colorectol carcinoma, the efficient application using LOH at operated part tissue which is designed to protect the recurrence as well as its cure will be needed.

  • PDF

Genomic diversity and admixture patterns among six Chinese indigenous cattle breeds in Yunnan

  • Li, Rong;Li, Chunqing;Chen, Hongyu;Liu, Xuehong;Xiao, Heng;Chen, Shanyuan
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제32권8호
    • /
    • pp.1069-1076
    • /
    • 2019
  • Objective: Yunnan is not only a frontier zone that connects China with South and Southeast Asia, but also represents an admixture zone between taurine (Bos taurus) and zebu (Bos indicus) cattle. The purpose of this study is to understand the level of genomic diversity and the extent of admixture in each Yunnan native cattle breed. Methods: All 120 individuals were genotyped using Illumina BovineHD BeadChip (777,962 single nucleotide polymorphisms [SNPs]). Quality control and genomic diversity indexes were calculated using PLINK software. The principal component analysis (PCA) was assessed using SMARTPCA program implemented in EIGENSOFT software. The ADMIXTURE software was used to reveal admixture patterns among breeds. Results: A total of 604,630 SNPs was obtained after quality control procedures. Among six breeds, the highest level of mean heterozygosity was found in Zhaotong cattle from Northeastern Yunnan, whereas the lowest level of heterozygosity was detected in Dehong humped cattle from Western Yunnan. The PCA based on a pruned dataset of 233,788 SNPs clearly separated Dehong humped cattle (supposed to be a pure zebu breed) from other five breeds. The admixture analysis further revealed two clusters (K = 2 with the lowest cross validation error), corresponding to taurine and zebu cattle lineages. All six breeds except for Dehong humped cattle showed different degrees of admixture between taurine and zebu cattle. As expected, Dehong humped cattle showed no signature of taurine cattle influence. Conclusion: Overall, considerable genomic diversity was found in six Yunnan native cattle breeds except for Dehong humped cattle from Western Yunnan. Dehong humped cattle is a pure zebu breed, while other five breeds had admixed origins with different extents of admixture between taurine and zebu cattle. Such admixture by crossbreeding between zebu and taurine cattle facilitated the spread of zebu cattle from tropical and subtropical regions to other highland regions in Yunnan.

Comparison of the copy-neutral loss of heterozygosity identified from whole-exome sequencing data using three different tools

  • Lee, Gang-Taik;Chung, Yeun-Jun
    • Genomics & Informatics
    • /
    • 제20권1호
    • /
    • pp.4.1-4.8
    • /
    • 2022
  • Loss of heterozygosity (LOH) is a genomic aberration. In some cases, LOH can be generated without changing the copy number, which is called copy-neutral LOH (CN-LOH). CN-LOH frequently occurs in various human diseases, including cancer. However, the biological and clinical implications of CN-LOH for human diseases have not been well studied. In this study, we compared the performance of CN-LOH determination using three commonly used tools. For an objective comparison, we analyzed CN-LOH profiles from single-nucleotide polymorphism array data from 10 colon adenocarcinoma patients, which were used as the reference for comparison with the CN-LOHs obtained through whole-exome sequencing (WES) data of the same patients using three different analysis tools (FACETS, Nexus, and Sequenza). The majority of the CN-LOHs identified from the WES data were consistent with the reference data. However, some of the CN-LOHs identified from the WES data were not consistent between the three tools, and the consistency with the reference CN-LOH profile was also different. The Jaccard index of the CN-LOHs using FACETS (0.84 ± 0.29; mean value, 0.73) was significantly higher than that of Nexus (0.55 ± 0.29; mean value, 0.50; p = 0.02) or Sequenza (0 ± 0.41; mean value, 0.34; p = 0.04). FACETS showed the highest area under the curve value. Taken together, of the three CN-LOH analysis tools, FACETS showed the best performance in identifying CN-LOHs from The Cancer Genome Atlas colon adenocarcinoma WES data. Our results will be helpful in exploring the biological or clinical implications of CN-LOH for human diseases.

Characterization analysis of Rongchang pig population based on the Zhongxin-1 Porcine Breeding Array PLUS

  • Dong Leng;Liangpeng Ge;Jing Sun
    • Animal Bioscience
    • /
    • 제36권10호
    • /
    • pp.1508-1516
    • /
    • 2023
  • Objective: To carry out a comprehensive production planning of the existing Rongchang pig population from both environmental and genetic aspects, and to establish a closed population with stable genetic diversity and strict pathogen control, it is necessary to fully understand the genetic background of the population. Methods: We genotyped 54 specific pathogen free (SPF) Rongchang pigs using the Zhongxin-1 Porcine Breeding Array PLUS, calculated their genetic diversity parameters and constructed their families. In addition, we also counted the runs of homozygosity (ROH) of each individual and calculated the value of inbreeding coefficient based on ROH for each individual. Results: Firstly, the results of genetic diversity analysis showed that the effective population size (Ne) of this population was 3.2, proportion of polymorphic markers (PN) was 0.515, desired heterozygosity (He) and observed heterozygosity (Ho) were 0.315 and 0.335. Ho was higher than He, indicating that the heterozygosity of all the selected loci was high. Secondly, combining the results of genomic relatedness analysis and cluster analysis, it was found that the existing Rongchang pig population could be divided into four families. Finally, we also counted the ROH of each individual and calculated the inbreeding coefficient value accordingly, whose mean value was 0.09. Conclusion: Due to the limitation of population size and other factors, the genetic diversity of this Rongchang pig population is low. The results of this study can provide basic data to support the development of Rongchang pig breeding program, the establishment of SPF Rongchang pig closed herd and its experimental utilization.

개의 친자감정을 위한 Microsatellite DNA 다형성 분석 (Analysis of Microsatellite DNA Polymorphism for Parentage Testing in Dog Breeds)

  • 조길재;조병욱;김선구;이길왕;김영규
    • Journal of Animal Science and Technology
    • /
    • 제45권2호
    • /
    • pp.191-198
    • /
    • 2003
  • 국내에서 사육중인 치와와 31두, 풍산개 20두, 래브라도 리트리버 8두를 대상으로 micro-satellite DNA형의 유전자 빈도에 기초하여 heterozygosity, PIC, 그리고 PE를 분석한 결과를 요약하면 다음과 같다. 치와와의 대립유전자 수는 4${\sim}$14개로서 expected heterozygosity와 PIC는 각각 0.432${\sim}$0.883 (평균 0.711), 0.397${\sim}$0.856(평균 0.659)으로 나타났으며 PEZ1, PEZ3, PEZ6, PEZ10, PEZ12의 marker는 PIC 0.7이상으로 나타났고 14개 marker를 조합시 부권부정율은 0.9999로 관찰되었다. 풍산개의 대립유전자 수는 2${\sim}$9개로서 expected heterozygosity와 PIC는 각각 0.262${\sim}$0.817 (평균 0.559), 0.222${\sim}$0.772 (평균 0.503)으로 나타났고 PEZ1, PEZ6, PEZ13의 marker는 PIC 0.7이상으로서 16개 marker를 조합시 부권부정율은 0.9991로 관찰되었다. 래버라도 리트리버의 대립유전자 수는 3${\sim}$5개로서 expected heterozygosity와 PIC는 각각 0.425${\sim}$0.808(평균 0.660), 0.354${\sim}$0.717(평균 0.563)으로 나타났고 PEZ8, PEZ12의 marker는 PIC 0.7이상으로 관찰되었으며 12개 marker를 조합시 부권부정율은 0.9968로 관찰되었다. 이상의 결과는 microsatellite DNA형에 의한 개의 친자감정 및 개체식별에 유용한 자료로 활용할 수 있을 것으로 사료된다.

Microsatellite DNA를 이용한 말 집단의 유전적 특성 및 유연 관계 (Genetic Relationship and Characteristics Using Microsatellite DNA Loci in Horse Breeds.)

  • 조길재
    • 생명과학회지
    • /
    • 제17권5호
    • /
    • pp.699-705
    • /
    • 2007
  • 말 6개 품종 192두를 대상으로 17개의 microsatellite DNA marker를 이용하여 유전자(DNA)형을 분석하여 비교한 결과 제주마에서 각 marker별로 대립유전자의 수는 5-10개(평균 7.35개)로 분포하였고 제주마에서 관찰된 대립유전자는 총 125개가 관찰되어 평균 좌위 당 7.35개로서 몽고마의 130개(평균 7.65개)보다는 낮은 수치였다. 또한 AHT5 marker에서 대립유전자 P, ASB23 marker에서 대립유전자 Q와 R, CA425 marker에서 대립유전자 H, HMS3 marker에서 대립유전자 S, HTG10 marker에서 대립유전자 J, LEX3 marker에서 대립유전자 J 등 6개 marker에서 7개의 특이 대립유전자가 관찰되었다. 관찰된 이형접합성(observed heterozygosity)과 기대된 이형접합성(expected heterozygosity)은 각각 0.429-0.905(평균 0.703)와 0.387-0.841(평균 0.702)로 관찰되었고 다량정보량(PIC)은 0.354(HTG6)-0.816(LEX3)로서 평균 0.659로 나타났으며 17개 marker중 AHT4, AHT5, CA425, HMS2, HMS3, HTG10, LEX3, VHL20 marker 등이 다량정보량(PIC) 0.7 이상을 나타내었다. 17개 marker에 대한 전체 부권부정율(친부마 혹은 친모마 하나의 유전자형을 알고 있을 경우)을 제주마에 적용 시 99.99%로 나타났다. 말 6개 품종별로 분석하였을 때 평균 대립유전자의 수는 7.64개(몽고마)-4.23개(미니츄어 말)로 분포하였고 17개 marker 전체에서는 153개의 대립유전자가 검출되었다. 품종별로 분석한 결과 기대된 이형접합성(expected heterozygosity)과 관찰된 이형접합성(observed heterozygosity)은 각각 0.7950$\pm$0.0141(몽고마)-0.6751$\pm$0.0378(미니츄어 말), 0.7135$\pm$0.0180(제주경주마)-0.5621$\pm$0.0401(미니츄어 말)로 나타났다. 말 6개 품종을 17개 microsatellite marker로 분석한 결과 몽고마, 제주마, 제주경주마 등의 순으로 높은 유전적 다양성을 보였다. 제주마와 가장 가까운 유전적 유연 관계를 나타낸 집단은 몽고마로서 Da genetic distance에서 0.1517로 나타났고, 제주경주마와는 0.2628의 유전적 거리를 보였다.

Empirical Selection of Informative Microsatellite Markers within Co-ancestry Pig Populations Is Required for Improving the Individual Assignment Efficiency

  • Lia, Y.H.;Chu, H.P.;Jiang, Y.N.;Lin, C.Y.;Li, S.H.;Li, K.T.;Weng, G.J.;Cheng, C.C.;Lu, D.J.;Ju, Y.T.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제27권5호
    • /
    • pp.616-627
    • /
    • 2014
  • The Lanyu is a miniature pig breed indigenous to Lanyu Island, Taiwan. It is distantly related to Asian and European pig breeds. It has been inbred to generate two breeds and crossed with Landrace and Duroc to produce two hybrids for laboratory use. Selecting sets of informative genetic markers to track the genetic qualities of laboratory animals and stud stock is an important function of genetic databases. For more than two decades, Lanyu derived breeds of common ancestry and crossbreeds have been used to examine the effectiveness of genetic marker selection and optimal approaches for individual assignment. In this paper, these pigs and the following breeds: Berkshire, Duroc, Landrace and Yorkshire, Meishan and Taoyuan, TLRI Black Pig No. 1, and Kaohsiung Animal Propagation Station Black pig are studied to build a genetic reference database. Nineteen microsatellite markers (loci) provide information on genetic variation and differentiation among studied breeds. High differentiation index ($F_{ST}$) and Cavalli-Sforza chord distances give genetic differentiation among breeds, including Lanyu's inbred populations. Inbreeding values ($F_{IS}$) show that Lanyu and its derived inbred breeds have significant loss of heterozygosity. Individual assignment testing of 352 animals was done with different numbers of microsatellite markers in this study. The testing assigned 99% of the animals successfully into their correct reference populations based on 9 to 14 markers ranking D-scores, allelic number, expected heterozygosity ($H_E$) or $F_{ST}$, respectively. All miss-assigned individuals came from close lineage Lanyu breeds. To improve individual assignment among close lineage breeds, microsatellite markers selected from Lanyu populations with high polymorphic, heterozygosity, $F_{ST}$ and D-scores were used. Only 6 to 8 markers ranking $H_E$, $F_{ST}$ or allelic number were required to obtain 99% assignment accuracy. This result suggests empirical examination of assignment-error rates is required if discernible levels of co-ancestry exist. In the reference group, optimum assignment accuracy was achievable achieved through a combination of different markers by ranking the heterozygosity, $F_{ST}$ and allelic number of close lineage populations.

Microsatellite Marker를 활용한 토종닭 브랜드 집단 간의 유전적 다양성 분석 (Comparison for Genetic Diversity between Korean Native Commercial Chicken Brand Groups using Microsatellite Markers)

  • 이학교;오재돈;박찬호;이건우;이준헌;전광주;공홍식
    • 한국가금학회지
    • /
    • 제37권4호
    • /
    • pp.355-360
    • /
    • 2010
  • 본 연구는 국내에 보급되고 있는 대표적인 토종닭 브랜드인 한협3호와 농촌진흥청에서 개발된 브랜드인 우리맛닭, 두 브랜드 집단 간의 유전적 특성을 분석하여 향후 브랜드간의 차별화 전략을 구체화 하는데 있어 기초 자료로 활용하고자 실시하였다. 토종닭 실용계인 우리맛닭(W) 152수와 한협3호(H) 150수, 총 302수를 선발하여 공시재료로 활용하였으며, 다형성이 확인된 10종의 MS marker를 선발하여 활용하였다. 분석 결과, 두 브랜드의 평균 대립유전자의 수는 9.3으로 확인되었으며, 우리맛닭의 평균 대립유전자의 수는 8.4개, 한협3호는 7.2개로 우리맛닭이 보유한 대립유전자의 수가 많은 것으로 확인되었다. 반면, 기대되는 이형접합도(Ex H)와 관측된 이형접합도(Ob H)는 한협3호가 우리맛닭에 비해 높은 것으로 확인되었다. 두 브랜드 집단을 대상으로 각각의 MS marker의 유전자형을 분석하여 브랜드별 기대되는 이형접합도(expected heterozygosity: Ex H)와 관측된 이형접합도(observed heterozygosity: Ob H) 및 PIC(polymorphism information content)값을 계산하였다. 두 브랜드 집단 간의 유전적 유연관계를 분석 결과, DA distance는 0.132, 그리고 standard genetic distance는 0.199로 확인되었다. 두 브랜드 집단 간의 유전적 구조에 따라 각 개체들이 어떻게 분포되어 있는가를 확인한 결과, 두 집단에 속한 개체들은 크게 두 개의 그룹으로 나뉘어 분포하고 있음을 확인할 수 있었다. 두 집단 간의 유전적 거리는 비교적 가깝지만 각 개체들간의 유전적 구조를 분석한 결과, 확연히 구분되는 유전적 특성을 지니고 있음을 확인하였다.