• 제목/요약/키워드: heterotrophic respiration

검색결과 19건 처리시간 0.025초

Short-term effects of fertilizer application on soil respiration in red pine stands

  • Kim, Choonsig;Jeong, Jaeyeob;Bolan, Nanthi S.;Naidu, Ravi
    • Journal of Ecology and Environment
    • /
    • 제35권4호
    • /
    • pp.307-311
    • /
    • 2012
  • This study was conducted to evaluate the dynamics of soil respiration (total soil and heterotrophic respiration) following fertilizer application in red pine forests. Fertilizer (N:P:K = 113:150:37 kg/ha), which reflects current practices in Korean forest, was applied in April 2011, and total soil and heterotrophic respiration rates were monitored from April 2011 to March 2012. Monthly variation of total soil and heterotrophic respiration rates were similar between the fertilizer and control treatments, as soil temperature was the dominant factor controlling the both rates. Total soil respiration rates during the study period were not significantly different between the fertilizer (0.504 g $CO_2\;m^{-2}\;h^{-1}$) and control (0.501 g $CO_2\;m^{-2}\;h^{-1}$) treatments. However, the proportion of heterotrophic respiration was higher in the fertilizer (78% of total soil respiration rates) than in the control (62% of total soil respiration rates) treatments. These results suggest that current fertilizer practices in Korea forest soil do not substantially affect total soil respiration rates.

Effects of Experimental Drought on Soil CO2 Efflux in a Larix Kaempferi Stand

  • Kim, Beomjeong;Yun, Youngjo;Choi, Byoungkoo
    • Journal of Forest and Environmental Science
    • /
    • 제34권3호
    • /
    • pp.253-257
    • /
    • 2018
  • Climate models forecast more frequent and a longer period of drought events which may impact forest soil carbon dynamics, thereby altering the soil respiration (SR) rate. We examine the simulated drought effects on soil $CO_2$ effluxes from soil surface partitioning heterotrophic and autotrophic soil respiration sources. Three replicates of drought plots ($6{\times}6m$) were constructed with the same size of three control plots. We examined the relation between $CO_2$ and soil temperature and soil moisture, each being measured at a soil depth of 15 cm. We also compared which factor affected $CO_2$ efflux more under drought conditions. Total SR, autotrophic respiration (AR) and heterotrophic respiration (HR) were positively correlated with soil temperature (p < 0.05), and the relationships were stronger in roof plots than in control plots. Total SR, AR, and HR were negatively correlated only in roof plots, and the only HR showed a significant correlation (p < 0.05, r = -0.59). Soil respiration rates were more influenced by soil temperature than by soil moisture, and this relationship was more evident under drought conditions.

낙동강 하구의 조석변화에 따른 Heterotrophic Activity의 계절적 변화와 염분의 영향 (Seasonal Variation of Heterotrophic Activity in the Estuary of Naktong River over Half Tidal Cycle and Salinity Effect)

  • 안태영;박중찬;하영칠
    • 미생물학회지
    • /
    • 제29권5호
    • /
    • pp.339-343
    • /
    • 1991
  • Heterotrophic activity, total bacteria and salinity were determined seasonally in the estuary of Naktong River over half tidal cycle. Heterotrophic activity was determined by the uptake of [U- $^{14}$ C]glucose. Heterotrophic activity fluctuated with the tides and was decreased as salinity increased. Teh great activity occurred near low ebb tide at all seasons except summer. The main environmental factor affecting hetreotrophic activity was the salinity rather than water temperature in the estuary of Naktong River. In order to estimate the effect of salt, salt was added to estuarine water. Vmax for glucose of salt-added water was 17% and 77% of original estuarine water at station 1 and 2 respectively and slight increase was observed at station 3. Respiration rate and Kt+Sn for glucose of salt-added sample increased at all 3 stations. The increase of the Kt value implies the reduced affinity of bacterial population for glucose. The effects of salinity on the heterotrophic activity were more extensive in the upper region of estuary than at the mouth.

  • PDF

강우 이벤트가 태화산 잣나무 식재림의 각 발생원별 $CO_2$ 발생량에 미치는 영향 (The Effect of Rain Fall Event on $CO_2$ Emission in Pinus koraiensis Plantation in Mt. Taehwa)

  • 서상욱;박성애;심규영;양병국;최은정;이재석;김태규
    • 환경생물
    • /
    • 제32권4호
    • /
    • pp.389-394
    • /
    • 2014
  • 본 연구는 몬순기후에 의해 장마라는 특징적인 강우패턴을 가지는 환경조건에서 강우 패턴 및 강우 강도의 변화가 삼림 내 지표 유출수와 토양수분함량을 변화시켜 토양호흡의 배출 양상을 어떻게 변화시키는지 알아보기 위하여 수행되었다. 대상지는 경기도 광주시에 위치한 서울대학교 학술림 내 잣나무식재림으로 2012년 1년 동안 자동 토양호흡 쳄버를 이용하여 연변화를 측정하였고 단근처리 기법을 이용하여 토양호흡 중 약 24%가 뿌리호흡에서 기인한 것으로 추정되었다. 이와 더불어 장마와 태풍으로 인한 다양한 강도의 강우가 발생한 7월 말부터 9월 말까지 휴대용 토양호흡 측정기를 이용하여 관측지 내 단근처리구와 단근 및 강우차단처리구에서 종속영양생물호흡을 측정하였다. 토양수분함량의 경우 고강도의 강우가 며칠씩 이어지더라도 20%를 초과하지 않았다. 이는 강수가 상대적으로 적은 시기에는 수목활성이나 토양미생물의 활성에 영향을 미칠 것으로 추정된다. 강우 강도가 10 mm 이하의 저강도 강우에서는 종속영양생물호흡이 약 14.4% 상승하였으나 10 mm 이상의 고강도 강우조건에서는 종속영양생물호흡이 25.5% 감소하였다. 이는 강우 강도에 따라 종속영양생물호흡의 배출 양상이 달라짐을 보여주었다.

A simple estimate of the carbon budget for burned and unburned Pinus densiflora forests at Samcheok-si, South Korea

  • Lim, Seok-Hwa;Joo, Seung Jin;Yang, Keum-Chul
    • Journal of Ecology and Environment
    • /
    • 제38권3호
    • /
    • pp.281-291
    • /
    • 2015
  • To clarify the effects of forest fire on the carbon budget of a forest ecosystem, this study compared the seasonal variation of soil respiration, net primary production and net ecosystem production (NEP) over the year in unburned and burned Pinus densiflora forest areas. The annual net carbon storage (i.e., NPP) was $5.75t\;C\;ha^{-1}$ in the unburned site and $2.14t\;C\;ha^{-1}$ in the burned site in 2012. The temperature sensitivity of soil respiration (i.e., $Q_{10}$ value) was higher in the unburned site than in the burned site. The annual soil respiration rate was estimated by the exponential regression equation with the soil temperatures continuously measured at the soil depth of 10 cm. The estimated annual soil respiration and heterotrophic respiration (HR) rates were 8.66 and $4.50t\;C\;ha^{-1}yr^{-1}$ in the unburned site and 4.08 and $2.12t\;C\;ha^{-1}yr^{-1}$ in the burned site, respectively. The estimated annual NEP in the unburned and burned forest areas was found to be 1.25 and $0.02t\;C\;ha^{-1}yr^{-1}$, respectively. Our results indicate that the differences of carbon budget and cycling between both study sites are considerably correlated with the losses of living plant biomass, insufficient nutrients and low organic materials in the forest soil due to severe damages caused by the forest fire. The burned Pinus densiflora forest area requires at least 50 years to attain the natural conditions of the forest ecosystem prior to the forest fire.

Method for Assessing Forest Carbon Sinks by Ecological Process-Based Approach - A Case Study for Takayama Station, Japan

  • Lee, Mi-Sun
    • The Korean Journal of Ecology
    • /
    • 제26권5호
    • /
    • pp.289-296
    • /
    • 2003
  • The ecological process-based approach provides a detailed assessment of belowground compartment as one of the major compartment of carbon balance. Carbon net balance (NEP: net ecosystem production) in forest ecosystems by ecological process-based approach is determined by the balance between net primary production (NPP) of vegetation and heterotrophic respiration (HR) of soil (NEP=NPP-HR). Respiration due to soil heterotrophs is the difference between total soil respiration (SR) and root respiration (RR) (HR=SR-RR, NEP=NPP-(SR-RR)). If NEP is positive, it is a sink of carbon. This study assessed the forest carbon balance by ecological process-based approach included belowground compartment intensively. The case study in the Takayama Station, cool-temperate deciduous broad-leaved forest was reported. From the result, NEP was estimated approximately 1.2 t C $ha^{-1} yr^{-1}$ in 1996. Therefore, the study area as a whole was estimated to act as a sink of carbon. According to flux tower result, the net uptake rate of carbon was 1.1 t C $ha^{-1} yr^{-1}$.

팔당호에서 종속영양 활성도의 계절적 변화 및 세균의 세포외 효소활성 (Seasonal Fluctuations of Heterotrophic Activity and Bacterial Extracellular Enzyme Activity in Paldang Lake)

  • 김상진
    • 미생물학회지
    • /
    • 제31권1호
    • /
    • pp.93-98
    • /
    • 1993
  • 수계생태계에서 유기물질의 순환을 이해하기 위하여 팔당호에서 종속영양 활성도와 세균세포의 효소활성의 계절절 변화를 연구하였다. 팔당호 I 의 glucose 전환시간은 수층, 퇴적토에서 2-1,300 시간, 17-170 시간, protein hydrolysate 는 5-900 시간, 15-240 시간, acetic acid 는 4-350 시간, 15-230 시간으로 계절적인 변화를 나타냈다. Glucose, protein hydrolysate, acetate 각각의 호흡율은 수층에서 23-32%, 38-41%, 22-28%로 나타났고 퇴적토에서는 34%, 61% and 41% 로 나타났다. 이 결과로 3가지 유기물질 종류 모두가 수층보다 퇴적토에서는 높은 율로 호흡됨을 알 수 있었다. 한편 세균의 $\alpha$-glucosidase, $\beta$-glucosidase, N-acetyl-$\beta$-D-glucosaminidase, aminopeptidase 활성력을 살펴본 결과 수층에서는 효소 각각에 대해 32-44%, 31-32%, 18-34% 61-67% 의 범위를 나타내었고 퇴적토에서는 34%, 40%, 23% 65%로 나타났다.

  • PDF

Effect of rainfall events on soil carbon flux in mountain pastures

  • Jeong, Seok-Hee;Eom, Ji-Young;Lee, Jae-ho;Lee, Jae-Seok
    • Journal of Ecology and Environment
    • /
    • 제41권11호
    • /
    • pp.302-309
    • /
    • 2017
  • Background: Large-scale land-use change is being caused by various socioeconomic problems. Land-use change is necessarily accompanied by changes in the regional carbon balance in terrestrial ecosystems and affects climate change. Therefore, it is crucial to understand the correlation between environmental factors altered by land-use change and the carbon balance. To address this issue, we studied the characteristics of soil carbon flux and soil moisture content related to rainfall events in mountain pastures converted from deciduous forest in Korea. Results: The average soil moisture contents (SMC) during the study period were 23.1% in the soil respiration (SR) plot and 25.2% in the heterotrophic respiration (HR) plot. The average SMC was increased to 2.1 and 1.1% in the SR and HR plots after rainfall events, respectively. In addition, saturated water content was 29.36% in this grassland. The soil water content was saturated under the consistent rainfall of more than $5mm\;h^{-1}$ rather than short-term heavy rainfall event. The average SR was increased to 28.4% after a rainfall event, but the average HR was decreased to 70. 1%. The correlation between soil carbon flux rates and rainfall was lower than other environmental factors. The correlation between SMC and soil carbon flux rates was low. However, HR exhibited a tendency to be decreased when SMC was 24.5%. In addition, the correlation between soil temperature and respiration rate was significant. Conclusions: In a mountain pasture ecosystem, rainfall induced the important change of soil moisture content related to respiration in soil. SR and HR were very sensitive to change of SMC in soil surface layer about 0-10-cm depth. SR was increased by elevation of SMC due to a rainfall event, and the result was assumed from maintaining moderate soil moisture content for respiration in microorganism and plant root. However, HR was decreased in long-time saturated condition of soil moisture content. Root has obviously contributed to high respiration in heavy rainfall, but it was affected to quick depression in respiration under low rainfall. The difference of SMC due to rainfall event was causative of a highly fluctuated soil respiration rate in the same soil temperature condition. Therefore, rainfall factor or SMC are to be considered in predicting the soil carbon flux of grassland ecosystems for future climate change.

국립생태원 캠퍼스 내 주요 식생의 탄소수지 (Carbon Budget in Campus of the National Institute of Ecology)

  • 김경순;임윤경;안지홍;이재석;이창석
    • 생태와환경
    • /
    • 제47권3호
    • /
    • pp.167-175
    • /
    • 2014
  • 본 연구는 국립생태원 캠퍼스의 탄소수지를 정량화하기 위하여 수행하였다. 현장조사는 국립생태원 캠퍼스의 기존 식생 중 침엽수림과 활엽수림에서 가장 넓은 면적을 차지하고 있는 곰솔군락과 밤나무군락을 대상으로 수행하였다. 순생산량(NPP)은 상대생장법을 적용하여 측정하였고, 토양호흡량은 EGM-4를 적용하여 측정하였다. 곰솔군락과 밤나무군락의 순생산량은 각각 $4.9ton\;C\;ha^{-1}yr^{-1}$$5.3ton\;C\;ha^{-1}yr^{-1}$으로 나타났고, 종속영양생물 호흡량은 각각 $2.4ton\;C\;ha^{-1}yr^{-1}$$3.5ton\;C\;ha^{-1}yr^{-1}$으로 나타났다. 순생산량과 종속영양생물 호흡량을 차감 계산하여 얻은 순생태계생산량(NEP)은 곰솔군락과 밤나무군락에서 각각 $2.5ton\;C\;ha^{-1}yr^{-1}$$1.8ton\;C\;ha^{-1}yr^{-1}$로 나타났다. 본 연구로부터 얻은 곰솔군락과 밤나무군락의 생태계순생산량 지수를 기존 식생에 적용하고 다른 연구로부터 얻은 여러 식생유형의 생태계순생산량 지수를 도입 식생에 대입하여 평가된 국립생태원에 성립된 전 식생의 탄소흡수능은 $147.6ton\;C\;ha^{-1}yr^{-1}$로 나타났고, 이를 이산화탄소로 환산하면 $541.2ton\;CO_2ha^{-1}yr^{-1}$이었다. 이러한 탄소흡수능은 에코리움으로 알려진 유리온실을 비롯하여 국립생태원 내 여러 시설을 운용하며 배출하는 탄소량의 62%에 해당한다. 이러한 탄소상쇄능은 대한민국 국토 전체 및 전형적인 농촌지역인 서천군의 탄소상쇄능의 약 5배에 해당한다. 현재 진행 중인 기후변화가 지구적 차원의 탄소수지 불균형에 기원했음을 고려하면, 본 연구에서 시도한 토지이용 유형을 반영한 공간차원의 탄소수지 평가는 기후변화 문제를 근본적으로 해결하기 위해 요구되는 기초정보를 제공할 수 있을 것으로 판단된다.

Cyanobacterium Synechocystis sp.PCC6803 psaB 돌연변이주의 광합성 전자전달에 미치는 호흡의 영향 (Influence of Respiration on Photosynthetic Electron Transport in psaB Mutants from Cyanobacterium Synechocystis sp. PCC6803)

  • 윤병철;장남기
    • 아시안잔디학회지
    • /
    • 제11권1호
    • /
    • pp.59-72
    • /
    • 1997
  • The influence of respiration on photosythetic electron transport were investigated in the Wid type and psaB mutants from Syneehocystis sp. PCC6803. The amount of glucose uptake in the wild type was proportional to the glucose concentration added in wild type and less than that of psaB mutants in the dark. It was suggested that psaB mutants more depend on the glucose than the wild type. It was investigated how the activities of isocitrate dehydrogenase(IDH) and glucose-6-phos-phate dehydrogenase(G6PDH) were changed. The activities of IDH were very low. While, the ac-tivities of G6PDH were much higher than that of IDH. These results agree to the reports that ex-ogenous glucose was dismilated aerobically via Oxidative Pentose Phosphate Pathway in heterotrophic cyanobacteria. PsaB mutants showed high G6PDH activity in the presence of glucose as well as in the dark and high respiratory activities especially in the dark. It was also investigated how photosynthetic electron transport activities were changed. PsaB mutants showed higher photosynthetic electron tranasport activities than wild type in the presence of glucose as well as in the dark. In the results, it was proposed that photosynthetic electron transport between PS I and PS U was complemented by respiratory electron transport through the NADPH generated by Dxidative Pentose Phophate Pathway in psaB mutant from Synechocystis sp. PCC6803. Key words: Photosynthetic electron transport, Respiration, Synechoystis sp. PCC6803, psaB mutant, Glucose uptake, IDH, G6PDH, Respiratory electron transport activity.

  • PDF