DOI QR코드

DOI QR Code

Method for Assessing Forest Carbon Sinks by Ecological Process-Based Approach - A Case Study for Takayama Station, Japan

  • Lee, Mi-Sun (Center for Global Environmental Research, National Institute for Environmental Studies)
  • Published : 2003.10.01

Abstract

The ecological process-based approach provides a detailed assessment of belowground compartment as one of the major compartment of carbon balance. Carbon net balance (NEP: net ecosystem production) in forest ecosystems by ecological process-based approach is determined by the balance between net primary production (NPP) of vegetation and heterotrophic respiration (HR) of soil (NEP=NPP-HR). Respiration due to soil heterotrophs is the difference between total soil respiration (SR) and root respiration (RR) (HR=SR-RR, NEP=NPP-(SR-RR)). If NEP is positive, it is a sink of carbon. This study assessed the forest carbon balance by ecological process-based approach included belowground compartment intensively. The case study in the Takayama Station, cool-temperate deciduous broad-leaved forest was reported. From the result, NEP was estimated approximately 1.2 t C $ha^{-1} yr^{-1}$ in 1996. Therefore, the study area as a whole was estimated to act as a sink of carbon. According to flux tower result, the net uptake rate of carbon was 1.1 t C $ha^{-1} yr^{-1}$.

Keywords

References

  1. Baldocchi, D.D. and T.P. Meyers. 1991. Trace gas exchange above the floor of a deciduous forest 1. Evaporation and $CO_2$ flux. J. Geophys. Res. 96: 7271-7285. https://doi.org/10.1029/91JD00269
  2. Bacastow, R. and C.D. Keeling. 1973. Atmospheric carbon dioxide and radiocarbon in the natural carbon cycle. II. Changes from A.D. 1700 to 2070 as deduced from a geochemical reservoir. In G.M. Woodwell and E.V. Pecan (eds.), Carbon and the biosphere. U.S. Dept. of Commerce, Springfield, Virginia. pp. 86-135.
  3. Bachelet, D., R.P. Neilson, J.M. Lenihan and R.J. Drapek. 2001. Climate change effects on vegetation distribution and carbon budget in the United States. Ecosystems 4: 164-185. https://doi.org/10.1007/s10021-001-0002-7
  4. Bekku, Y., H. Koizumi, T. Oikawa and I. Iwaki. 1997. Examination of four methods for measuring soil respiration. Appl. Soil Ecol. 5: 247-254. https://doi.org/10.1016/S0929-1393(96)00131-X
  5. Bowden R.D., R.D. Boone, J.M. Melillo and J.B. Garrison. 1993. Contributions of aboveground litter, belowground litter, and root respiration to total soil respiration in a mixed hardwood forest. Can. J. For. Res. 23: 1402-1407. https://doi.org/10.1139/x93-177
  6. Britta, W. and A. Li. 2003. A calibration system for soil carbon dioxide-efflux measurement chambers: Description and application. Soil Sci. Soc. Amer. J. 67: 327-334. https://doi.org/10.2136/sssaj2003.0327
  7. Bowden, R.D., M.N. Kathleen and M.R. Gina. 1998. Carbon dioxide and methane fluxes by a forest soil under laboratory-controlled moisture and temperature conditions. Soil Biol. Biochem. 30: 1591-1597. https://doi.org/10.1016/S0038-0717(97)00228-9
  8. Cropper, W.P., K.C. Ewel and J.W. Raich. 1985. The measurement of soil $CO_2$ evolution in situ. Pedobiologia 28: 35-40.
  9. de Jong, E. and J.V. Shappert. 1972. Calculation of soil respiration and activity from $CO_2$ profiles in the soil. Soil Sci. 113: 328-333. https://doi.org/10.1097/00010694-197205000-00006
  10. Edwards, N.T. 1975. Effects of temperature and moisture on carbon dioxide evolution in a mixed deciduous forest floor. Soil Sci. Soc. Amer. J. 39: 361-365. https://doi.org/10.2136/sssaj1975.03615995003900020034x
  11. Edwards, N.T. 1982. The use of soda-lime for measuring respiration rates in terrestrial systems. Pedobiologia 23: 321-330.
  12. Edwards, N.T. 1991. Root and soil respiration responses to ozone in Pinus taeda L. seedlings. New Phytol. 118: 315-321. https://doi.org/10.1111/j.1469-8137.1991.tb00983.x
  13. Edwards, N.T. and W.F. Harris.1977. Carbon in a mixed deciduous forest floor. Ecology 58: 431-437. https://doi.org/10.2307/1935618
  14. Ewel, K.C., W.P. Jr. Cropper and H.L. Gholz. 1987. Soil $CO_2$ evolution in Florida slash plantations. II. Importance of root respiration. Can. J. For. Res. 17: 330-333. https://doi.org/10.1139/x87-055
  15. Fang, C. and J.B. Moncrieff. 1996. An improved dynamic chamber technique for measuring CO2 efflux from the surface of soil. Func. Ecol. 10: 297-305. https://doi.org/10.2307/2389856
  16. Francey, R.J., P.P. Tans, C.E. Allison, I.G. Enting, J.W.C. White and M. Trolier. 1995. Changes in oceanic an terrestrial carbon uptake since 1982. Nature 373: 326-330. https://doi.org/10.1038/373326a0
  17. Gupta, S.R. and J.S. Singh. 1981. Soil respiration in a tropical grassland. Soil Biol. Biochem. 13: 261-268. https://doi.org/10.1016/0038-0717(81)90060-2
  18. Hanson, P.J., N.T. Edwards, C.T. Graten and J.A. Andrews. 2000. Separating root and soil microbial contributions to soil respiration: A review of methods and observations. Biogeochemistry 48: 115-146. https://doi.org/10.1023/A:1006244819642
  19. Hanson, P.J., S.D. Wullschleger, S.A. Bohlman and D.E. Todd 1993. Seasonal and topographic patterns of forest floor $CO_2$ efflux from an upland oak forest. Tree Physiol. 13: 1-15. https://doi.org/10.1093/treephys/13.1.1
  20. IPCC. 2001. Land use, land-use change, and forestry. In R.T. Watson, I.R. Noble, B. Bolin, N.H. Ravindranath, D.J. Verardo and D.J. Dokken (eds.). A special report of the IPCC. Cambridge University Press, Cambridge, UK.
  21. Janssens, I.A., A.S. Kowalski, B. Longdoz and R. Ceulemans. 2000. Assessing forest soil $CO_2$ efflux: an in situ comparison of four techniques. Tree Physiol. 20: 23-32. https://doi.org/10.1093/treephys/20.1.23
  22. Jenkinson, D.S., D.E. Adams and A. Wild. 1991. Model estimates of $CO_2$ emissions from soil in response to global warming. Nature 351: 304-306. https://doi.org/10.1038/351304a0
  23. Jensen, L.S., T. Mueller, K.R. Tate, D.J. Ross, J. Magid and L.E. Nielsen. 1996. The soil surface $CO_2$ flux as an index of soil respiration in site: A comparison of two chamber methods. Soil Biol. Biochem. 28: 1297-1306. https://doi.org/10.1016/S0038-0717(96)00136-8
  24. Kirita, H. 1971. Re-examination of the absorption method of measuring soil respiration under field conditions IV. An improved absorption method using a disc of plastic sponge as absorbent holder. Jpn. J. Ecol. 21: 119-127 (in Japanese, with English summary).
  25. Koizumi, H. 2001. Carbon cycling in croplands. In M. Shiyomi and H. Koizumi (eds.). Structure and function in agroecosystem design and management CRC Press, Florida, U.S. pp. 207-226.
  26. Koizumi, H.,T. Nakadai, Y. Usami, M. Satoh, M. Shiyomi and T. Oikawa. 1991. Effects of carbon dioxide concentration on microbial respiration in soil. Ecol. Res. 6: 227-232. https://doi.org/10.1007/BF02347124
  27. Law, B.E., P.E. Thornton, J.I. Irvine, P.M. Anthoni and S. Van Tuyl. 2001. Carbon storage and fluxes in ponderosa pine forests at different developmental stages. Global Change Biol. 7: 755-777. https://doi.org/10.1046/j.1354-1013.2001.00439.x
  28. Lee, M.S., K. Nakane, T. Nakatsubo, W. Mo and H. Koizumi. 2002. Effects of rainfall events on soil $CO_2$ flux in a cool-temperate deciduous broad-leaved forest. Ecol. Res. 17: 401-409. https://doi.org/10.1046/j.1440-1703.2002.00498.x
  29. Lee, M.S., K. Nakane, T. Nakatsubo and H. Koizumi. 2003a. Seasonal changes in the contribution of root respiration to total soil respiration in a cool-temperate deciduous forest. Plant Soil 25: 5311-318.
  30. Lee, M.S., K. Nakane, T. Nakatsubo and H. Koizumi. 2003b. Contribution of root respiration to total soil respiration in cool-temperate deciduous forest. ILEPS (Integrated Land Ecosystem-Atmosphere Process Study) In Report series in aerosol science, 62B: 228-233.
  31. Longdoz, B., M. Yearnaux and M. Aubinet. 2000. Soil $CO_2$ efflux measurements in a mixed forest: Impact of chamber disturbances, spatial variability and seasonal evolution. Global Change Biol. 5: 269-281. https://doi.org/10.1046/j.1365-2486.1999.00218.x
  32. Lund, C.P., W.J. Riley, L.L. Pierce and C.B. Field. 1999. The effects of chamber pressurization on soil-surface $CO_2$ flux and the implications for NEE measurements under evaluated $CO_2$. Global Change Biol. 5: 269-281. https://doi.org/10.1046/j.1365-2486.1999.00218.x
  33. Luo, Y., R.B., Jackson C.B. Field and H.A. Mooney. 1996. Evaluated $CO_2$ increases belowground respiration in California grasslands. Oecologia 108: 130-137. https://doi.org/10.1007/BF00333224
  34. Malhi, Y., D.D. Baldocchi and P.G. Jarvis. 1999. The carbon balance of tropical, temperate and boreal forests. Plant Cell Environ. 22: 715-740. https://doi.org/10.1046/j.1365-3040.1999.00453.x
  35. Mariko, S., N. Nishimura, W. Mo, Y. Matsui, M. Yokozawa, S. Sekikawa and H. Koizumi. 2000. Measurement of $CO_2$ fluxes from soil and snow surfaces with open dynamic chamber technique. Environ. Sci. 13: 69-74.
  36. Martin, P.H, G-J. Nabuurs, M. Aubinet, T. Karjalainen, E.L. Vine, J. Kinsman and L.S. Heath. 2001. Carbon sinks in temperate forests. Ann. Rev. Energy Environ. 26: 435-465. https://doi.org/10.1146/annurev.energy.26.1.435
  37. McGuire, A.D., J.M. Melillo, D.W. Kicklighter and L.A. Joyce. 1995. Equilibrium responses of soil carbon to climate change: Empirical and process-based estimates. J. Biogeochemistry. 22: 785-796.
  38. Nakadai T., H. Koizumi, Y. Usami, M. Satoh and T. Oikawa. 1996. Examination of the method for measuring soil respiration in cultivated land: Effects of carbon dioxide concentration on soil respiration. Ecol. Res. 8: 65-71. https://doi.org/10.1007/BF02348608
  39. Nakane, K. 1975. Dynamics of soil organic matter in different parts on a slope under evergreen oak forest. Jpn. J. Ecol. 25: 206-216 (in Japanese with English summary).
  40. Nakane, K. 2001. Quantitative evaluation of atmospheric $CO_2$ sink into forest soils from the tropics to the boreal zone during the past three decades. Ecol. Res. 16: 671-685. https://doi.org/10.1046/j.1440-1703.2001.00438.x
  41. Nakane K, T. Kohno and T. Horikoshi. 1996. Root respiration before and just after clear-felling in a mature deciduous, broad-leaved forest. Ecol. Res. 11, 111-119. https://doi.org/10.1007/BF02347678
  42. Nay, S.M., K.G. Mattson and B.T. Bormann. 1994. Biases of chamber methods for measuring soil $CO_2$ efflux demonstrated with a laboratory apparatus. Ecology 75: 2460-2463. https://doi.org/10.2307/1940900
  43. Norman, J.M., R. Garcia and S.B. Verma. 1992. Soil surface $CO_2$ fluxes and the carbon budget of a grassland. J. Geophy. Res. 97: 18,845-18,853. https://doi.org/10.1029/92JD01348
  44. Norman, J.M., C.J. Kucharik, S.T. Gower, D.D. Baldocchi, P.M. Crill, M. Rayment, K. Savage and R.G. Stiegl. 1997. A comparison of six methods for measuring soil-surface carbon dioxide fluxes. J. Geophys. Res. 102: 28771-28777. https://doi.org/10.1029/97JD01440
  45. Oechel, W.E., G.L. Vourlitis, S.J. Hastings and S.A. Bochkarev. 1995. Change in arctic $CO_2$ flux over two decades: Effects of climate change at Barrow Alaska. Ecol. App. 5: 846-855. https://doi.org/10.2307/1941992
  46. Post, W.M., T.H. Peng, W.R. Emanuel, A.W. King, V.H. Dale and D.L. De Angelis. 1990. The global carbon cycle. Amer. Sci. 78: 310-326.
  47. Raich, J.W. and W.H. Schlesinger. 1992. The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate. Tellus 44B: 81-99.
  48. Randerson, J.T., M.V. Thompson, I.Y. Fung, T. Conway and C.B. Field. 1997. The contribution of terrestrial sources and sinks to tends in the seasonal cycle of atmospheric carbon dioxide. Global Biogeochem. Cycl. 11: 535-560. https://doi.org/10.1029/97GB02268
  49. Rochette, P., B. Ellert, E.G. Gregorich, R.L. Desjardins, E. Pattey, R. Lessard and B.G. Johnson. 1997. Description of a dynamic closed chamber for measuring soil respiration and its comparison with other techniques. Can J. Soil Sci. 77: 195-203. https://doi.org/10.4141/S96-110
  50. Rochette, P., E.G. Gregorich and R.L. Desjardins. 1992. Comparison of static and dynamic closed chambers for measurement of soil respiration under field conditions. Can. J. Soil Sci. 72: 605-609. https://doi.org/10.4141/cjss92-050
  51. Rochette, P. and L.B. Flanagan. 1997. Quantifying rhizosphere respiration in a corn crop under field conditions. Soil Sci. Soc. Amer. J. 61: 466-474. https://doi.org/10.2136/sssaj1997.03615995006100020014x
  52. Rochette, P., L.B. Flanagan and E.G. Gregorich. 1999. Separating soil respiration into plant and soil components using analysis of natural abundance of arbon-13. Soil Sci. Soc. Amer. J. 63: 1207-1213. https://doi.org/10.2136/sssaj1999.6351207x
  53. Rustad, L.E., T.G. Huntington and R.D. Boone. 2000. Controls on soil respiration: Implications for climate change. Biogeochemistry. 48: 1-6. https://doi.org/10.1023/A:1006255431298
  54. Ryan, M.G., R.M. Hubbard, S. Pongracic, R.J. Raison and R.E. McMurtrie. 1996. Foliage, fine-root, wood-tissue and stand respiration in Pinus radiata in relation to nitrogen status. Tree Physiol. 16: 333-343. https://doi.org/10.1093/treephys/16.3.333
  55. Saxe, H., M.G.R. Cannell, O.Johnsen, M.G. Ryan and G. Vourlitis. 2001. Tree and forest functioning in response to global warming. New Phytol. 149: 369-400.
  56. Schimel, D.S., B.H. Braswell, B.A. Holland, R. McKeown, D.S. Ojima, T.H. Painter, W.J. Parton and A.R. Townsend. 1994. Climatic, edaphic and biotic controls over the storage and turnover of carbon in soils. Global Biogeochem. 8: 279-293. https://doi.org/10.1029/94GB00993
  57. Singh, J.S. and S.R. Gupta. 1977. Plant decomposition and soil respiration in terrestrial ecosystems. Botan. Rev. 43: 449-528. https://doi.org/10.1007/BF02860844
  58. Tans, P.P., I.Y. Fung and T. Takahashi. 1990. Observational constrains on the global $CO_2$ budget. Science 247: 1431-1438 https://doi.org/10.1126/science.247.4949.1431
  59. Townsend, A.R., P.M. Vitousek and E.A. Holland. 1992. Tropical soils could dominate the short-term carbon cycle feedbacks to increased global temperatures. Climatic Change 22: 293-303. https://doi.org/10.1007/BF00142430
  60. Valentini, R., G. Matteucci, A.J. Dolman, E.D. Schulze, C. Rebmann, E.J. Moors, A. Granier, P. Gross, N.O. Jensen, K. Pilegaard, A. Lindroth, A. Grelle, C. Bernhofer, T. GrUnwald, M. Aubinet, R. Ceulemans, A.S. Kowalski, T. Vesala, U. Rannik, P. Berbigier, D. Loustau, J. Guomundsson, H. Thorgeirsson, A. Ibrom, K. Morgenstern, R. Clement, J. Moncrieff, L. Montagnani, S. Minerbi and P.G. Jarvis. 2000. Respiration as the main determinant of carbon balance in European forests. Nature 404: 861-865. https://doi.org/10.1038/35009084
  61. Witkamp, M. and M.L. Frank. 1969. Evolution of $CO_2$ from litter, humus and subsoil of a pine stand. Pedobiologia 9: 358-365.
  62. Woodwell, G.M., J.E. Hobbie, R.A. Hunghton, J.M. Melillo and B. Moore. 1983. Global deforestation: Contribution to atmospheric carbon dioxide. Science 222: 1081-1086. https://doi.org/10.1126/science.222.4628.1081
  63. Xu, M. and Y. Qi. 2001. Soil-surface $CO_2$ efflux and its spatial and temporal variations in a young ponderosa pine plantation in northern California. Global Change Biol. 7: 667-677. https://doi.org/10.1046/j.1354-1013.2001.00435.x
  64. Yamamoto, S., S. Murayama, N. Saigusa and H. Kondo. 1999. Seasonal and inter-annual variation of $CO_2$ flux between a temperate forest and the atmosphere in Japan. Tellus 51B: 402-413.

Cited by

  1. Soil respiration of forest ecosystems in Japan and global implications vol.21, pp.6, 2006, https://doi.org/10.1007/s11284-006-0038-4
  2. Autotrophic and heterotrophic respiration in needle fir and Quercus-dominated stands in a cool-temperate forest, central Korea vol.123, pp.4, 2010, https://doi.org/10.1007/s10265-010-0316-7
  3. Effects of Tree Density Control on Carbon Dynamics in Young Pinus densiflora stands vol.105, pp.3, 2016, https://doi.org/10.14578/jkfs.2016.105.3.275