• Title/Summary/Keyword: heterogeneous autoregressive(${\infty}$) model

Search Result 2, Processing Time 0.014 seconds

Neural network heterogeneous autoregressive models for realized volatility

  • Kim, Jaiyool;Baek, Changryong
    • Communications for Statistical Applications and Methods
    • /
    • v.25 no.6
    • /
    • pp.659-671
    • /
    • 2018
  • In this study, we consider the extension of the heterogeneous autoregressive (HAR) model for realized volatility by incorporating a neural network (NN) structure. Since HAR is a linear model, we expect that adding a neural network term would explain the delicate nonlinearity of the realized volatility. Three neural network-based HAR models, namely HAR-NN, $HAR({\infty})-NN$, and HAR-AR(22)-NN are considered with performance measured by evaluating out-of-sample forecasting errors. The results of the study show that HAR-NN provides a slightly wider interval than traditional HAR as well as shows more peaks and valleys on the turning points. It implies that the HAR-NN model can capture sharper changes due to higher volatility than the traditional HAR model. The HAR-NN model for prediction interval is therefore recommended to account for higher volatility in the stock market. An empirical analysis on the multinational realized volatility of stock indexes shows that the HAR-NN that adds daily, weekly, and monthly volatility averages to the neural network model exhibits the best performance.

Stationary bootstrapping for structural break tests for a heterogeneous autoregressive model

  • Hwang, Eunju;Shin, Dong Wan
    • Communications for Statistical Applications and Methods
    • /
    • v.24 no.4
    • /
    • pp.367-382
    • /
    • 2017
  • We consider an infinite-order long-memory heterogeneous autoregressive (HAR) model, which is motivated by a long-memory property of realized volatilities (RVs), as an extension of the finite order HAR-RV model. We develop bootstrap tests for structural mean or variance changes in the infinite-order HAR model via stationary bootstrapping. A functional central limit theorem is proved for stationary bootstrap sample, which enables us to develop stationary bootstrap cumulative sum (CUSUM) tests: a bootstrap test for mean break and a bootstrap test for variance break. Consistencies of the bootstrap null distributions of the CUSUM tests are proved. Consistencies of the bootstrap CUSUM tests are also proved under alternative hypotheses of mean or variance changes. A Monte-Carlo simulation shows that stationary bootstrapping improves the sizes of existing tests.