• Title/Summary/Keyword: heterodyne technique

Search Result 30, Processing Time 0.026 seconds

High-speed, High-resolution Phase Measuring Technique for Heterodyne Displacement Measuring Interferometers. (헤테로다인 변위 측정 간섭계의 고속, 고분해능 위상 측정)

  • 김승우;김민석
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.203-206
    • /
    • 2002
  • One of the ever-increasing demands on the performances of heterodyne interferometers is to improve the measurement resolution, of which current state-of-the-art reaches the region of sub-nanometers. We propose a new scheme of phase-measuring electronics that reduces the measurement resolution without further increase in clock speed. Our scheme adopts a super-heterodyne technique that lowers the original beat frequency to a level of 1 MHz by mixing it with electrically generated reference signal. The technique enables us to measure the phase of Doppler shift with a resolution of 1.58 nanometer at a sampling rate of 1 MHz. To avoid the undesirable decrease in the maximum measurable speed caused by the lowered beat frequency, a special from of frequency up-down counting technique is combined with the super-heterodyning. This alloys performing required phase unwrapping simply by using programmable digital gates without 2$\pi$ ambiguities up to the maximum velocity of 2.35 m/s.

  • PDF

High-speed, High-resolution Phase Measuring Technique for Heterodyne Displacement Measuring Interferometers (헤테로다인 변위 측정 간섭계의 고속, 고분해능 위상 측정)

  • Kim, Min-Seok;Kim, Seung-Woo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.9
    • /
    • pp.172-178
    • /
    • 2002
  • One of the ever-increasing demands on the performances of heterodyne interferometers is to improve the measurement resolution, of which current state -of-the-art reaches the region of sub-nanometers. So far, the demand has been met by increasing the clock speed that drives the electronics involved fur the phase measurement of the Doppler shift, but its further advance is being hampered by the technological limit of modem electronics. To cope with the problem, in this investigation, we propose a new scheme of phase -measuring electronics that reduces the measurement resolution without further increase in clock speed. Our scheme adopts a super-heterodyne technique that lowers the original beat frequency to a level of 1 MHz by mixing it with a stable reference signal generated from a special phase- locked-loop. The technique enables us to measure the phase of Doppler shift with a resolution of 1.58 nanometer at a sampling rate of 1 MHz. To avoid the undesirable decrease in the maximum measurable speed caused by the lowered beat frequency, a special form of frequency up-down counting technique is combined with the super-heterodyning. This allows performing required phase unwrapping simply by using programmable digital gates without 2n ambiguities up to the maximum velocity guaranteed by the original beat frequency.

Analyses of Short Pulse Generation Using Heterodyne Techniques

  • Kim, Jung-Tae
    • Journal of information and communication convergence engineering
    • /
    • v.5 no.3
    • /
    • pp.281-284
    • /
    • 2007
  • We have analyzed the short pulse generation using heterodyne techniques. The numerical model for semiconductor lasers under the heterodyne technique is based on the Lang's equation and has been extended in order to take into account the simultaneous injection of the multiple sidebands of the current-modulated laser. The unselected sidebands will affect the optical and RF-spectral characteristics even when the semiconductor laser is locked to the target sidebands.

Improvement of Measurement Accuracy for Absolute Height by Using Two Types of Doppler and Heterodyne Optical Interferometry (도플러방식과 헤테로다인 방식의 광간섭법을 병용한 절대높이 측정 정밀도 향상)

  • Ahn, Geun-Sik;Jhang, Kyung-Young;Moon, Heui-Kwan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.6
    • /
    • pp.128-135
    • /
    • 1996
  • This paper proposes a high precision measurement technique to obtain the height of gage block with a few millimeter height. The proposed technique is consisted of two steps : In the first step, laser position transducer and electric micrometer are adopted to obtain a coarse value of the height of gage block, and then, in the second step, heterodyne laser interferometry is adopted to acquire the precision value. A new kind of phase detector is constructed in the low cost for the heterodyne interferometer and its linearity with ${\pm}1%$ is confirmed by experiment. Also measurement error factors due to enviroments are discussed and methodology to reduce such errors is proposed. Preliminary experiments are carried out for the gage blocks of as high as a few millimeter.

  • PDF

A High-Resolution Heterodyne Interferometer using Beat Frequency between Two-Axial Modes of a HeNe Laser (2-종 모드 레이저를 이용한 고분해능 헤터로다인 간섭계)

  • 김민석;김승우
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.214-219
    • /
    • 1997
  • We propose a new scheme of high-resolution heterodyne interferometer that employs the two-axial mode He-Ne laser with an inter-mode beat frequency of 600-1000 MHz. An electronic RF-heterodyne circuit lowers the beat frequency down to 5 MHz, so that the phase change of the interferometer output is precisely measured with a displacement resolution of 0.1 nanometer without significant loss of dynamic bandwidth. A thermal control scheme is adopted to stabilize the cavity length with aims to suppress frequency drifts caused by the phenomena of frequency pulling and polarization anisotropy of the two-axial mode laser to a stability level of 2 parts in $10^9$. The two-axial mode HeNe laser yields a high output power of 2.0 mW, whlch allows us to perform multiple measurements of up to 10 machine axes simultaneously.

  • PDF

광간섭법을 이용한 절대높이 측정 정밀도 향상에 관한 연구

  • 안근식;장경영;문희관
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1993.10a
    • /
    • pp.493-498
    • /
    • 1993
  • This paper proposes a high precision measurement technique to obtain the height of gage block. The proposed technique is consisted of two steps : In the first step, laser position transducer and electric micrometer are adopted to obtain a coarse value of the height of gage block, and then, second, heterodyne laser interferometry is adopted to acquire the precision value. The experiment results show that accuract in the order of a few nanometer is achieved for the gage blacks of as high as a few millimeter.

  • PDF

A High-Resolution Heterodyne Interferometer using Beat Frequency between Two-Axial Modes of a HeNe Laser (2-종모드 레이저를 이용한 고분해능 헤테로다인 간섭계)

  • Kim, Min-Seok;Kim, Seung-Woo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.4
    • /
    • pp.195-201
    • /
    • 2002
  • We propose a new scheme of high-resolution heterodyne interferometer that employs the two-axial mode He-Ne laser with an inter-mode beat frequency of 600~1000 MHz. An electronic RF-heterodyne circuit lowers the beat frequency down to 5 MHz, so that the phase change of the interferometer output is precisely measured with a displacement resolution of 0.1 nanometer without significant loss of dynamic bandwidth. A thermal control scheme is adopted to stabilize the cavity length with ainus to suppress frequency drifts caused by the phenomena of frequency pulling and polarization anisotropy of the two-axial made laser to a stability level of 2 parts in $10^9$. The two-axial mode HeNe laser yields a high output power of 2.0 mW, which allows us to perform multiple measurements of up to 10 machine axes simultaneously.

Precise Position Control of a Linear Stage with I/Q heterodyne Interferometer Feedback

  • Moon, Chan-Woo;Lee, Sung-Ho;Chung, J.K.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1142-1146
    • /
    • 2004
  • The ultra precision linear stage is an essential device in the fields of MEMS and Bio technology. A piezo electric motor is widely used for its better linear characteristics, faster response time, and smaller size than conventional electro-magnetic actuator. We develop a new inchworm type motor to implement an actuator-integrated a long stroke linear stage which can move fast. To implement a servo system, we use a heterodyne interferometer as a position sensor, and we propose a new measurement technique using I/Q demodulator, and we propose a counting method to measure the position of fast moving object with low cost circuitry. The characteristics of the actuator and servo system are evaluated by measuring its displacement with a commercial laser interferometer.

  • PDF

Millimeter-wave signal Generation using Heterodyne Technique (헤테로다인 기법을 이용한 밀리미터파 신호 생성)

  • 김정태
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.7 no.6
    • /
    • pp.1334-1340
    • /
    • 2003
  • In this paper, We have proposed an Heterodyne technique to generate millimeter-wave signal. Microwave signals in cellular broadband mobile communication networks and distributed networks can favorably be generated and distributed by optical techniques. In principle, these techniques have already been investigated for optical control of phase- array antennas, characterization of photo-detector and phase locking of millimeter-wave oscillators and now being applied to wireless communications. The generation and transmission of millimeter-wave radio signals by optical means is of interest for future pico-cell broadband mobile communication system, especially for systems operating at frequencies of 300Hz.