• Title/Summary/Keyword: herpes simplex virus-1

Search Result 146, Processing Time 0.024 seconds

Transcriptional Regulation of the VP16 Gene of Herpes Simplex Virus Type 1

  • Kwun, Hyun-Jin;Jun, Hong-Ki;Lee, Tae-Ho;Jang, Kyung-Lib
    • BMB Reports
    • /
    • v.32 no.5
    • /
    • pp.456-460
    • /
    • 1999
  • The promoter of the HSV-1 VP16 gene contains binding sites for the cellular transcription factors such as USF, CTF, and Sp1, each of which affects basal level expression of the VP16 gene. Transcription of the VP16 gene was induced by viral immediate-early proteins, ICP0 and ICP4, in a synergistic manner but repressed by ICP22. To gain further insight into the role of ICP0 in the expression of the VP16 gene during virus infection, several mutants with deletions in each of their transcriptional regulatory elements were generated. According to transient gene expression assays of these mutants using the CAT gene as a reporter, the USF and CTF binding sites were necessary for efficient induction of the promoter in the presence of transfected ICP0 or during virus infection, whereas the Sp1 binding site had little effect on ICP0-mediated VP16 expression. These results indicate that the immediate early proteins of HSV-1 regulate expression of the VP16 gene during virus infection by modulating the activities of cellular transcription factors such as USF and CTF.

  • PDF

Cloning, Sequencing and Baculovirus-based Expression of Fusion-Glycoprotein D Gene of Herpes Simplex Virus Type 1 (F)

  • Uh, Hong-Sun;Choi, Jin-Hee;Byun, Si-Myung;Kim, Soo-Young;Lee, Hyung-Hoan
    • BMB Reports
    • /
    • v.34 no.4
    • /
    • pp.371-378
    • /
    • 2001
  • The Glycoprotein D (gD) gene of the HSV-1 strain F was cloned, sequenced, recombinated into the HcNPV (Hyphantria cunea nuclear polyhedrosis virus) expression vector and expressed in insect cells. The gD gene was located in the 6.43 kb BamHI fragment of the strainF. The open reading frame (ORF) of the gD gene was 1,185 by and codes 394 amino acid residues. Recombinant baculoviruses, GD-HcNPVs, expressing the gD protein were constructed. Spodoptera frugiperda cells, infected with the recombinant virus, synthesized a matured gX-gD fusion protein with an approximate molecular weight of 54 kDa and secreted the gD proteins into the culture media by an immunoprecipitation assay The fusion gD protein was localized on the membrane of the insect cells, seen by using an immunofluorescence assay The deduced amino acid sequence presents additional characteristics compatible with the structure of a viral glycoprotein: signal peptide, putative glycosylation sites and a long C-terminal transmembrane sequence. These results indicate the utility of the HcNPV-insect cell system for producing and characterizing eukaryotic proteins.

  • PDF

Identification of the Negative Regulatory Element on the Caprine $\beta$ Lactoglobulin Promoter (염소의 베타-락토글로불린 유전자 프로모터의 음성 조절 인자 규명)

  • 김재만;유명희
    • The Korean Journal of Zoology
    • /
    • v.38 no.3
    • /
    • pp.433-441
    • /
    • 1995
  • Mammary tissue-specificity of the caprine $\beta$-lactoglobulin promoter appears to be secured by repression in non-expressing cells. In order to identify the mechanism of the negative regulation, the upstream promoter sequence of the caprine $\beta$-lactoglobulin gene was analyzed in detail. The repression was mediated by the upstream flanking sequence from -47O to -205. The sequence could repress the promoter activity of $\beta$-lactoglobulin in either orientation. The effect of the putative negative regulation element of caprine $\beta$-lactoglobulin on heterlogous promoters, however, varied: the promoter activity of herpes simplex virus thimidine kinase was either repressed or activated by the sequence depending on its orientation, while the SV4O early promoter was activated rather than repressed. The regulatory sequence involving the putative negative regulatory element was strongly shifted with the nuclear extract from non-mammary HeLa and CV-1 cells, while only weak shift was observed with that of mammary HC11 cells. Such correlation between repression and factor binding suggests that the protected regions in foot-printing assay may be the negative regulatory elements of $\beta$-lactoalobulin that serve tissue-specific repression.

  • PDF

Gene Therapy Using GM-CSF Gene Transferred by a Defective Infectious Single-cycle Herpes Virus in Micro-residual Organotropic Head and Neck Squamous Cell Cancer Model (향장기성 두경부 편평세포암종의 미세잔존암 모델에서 GM-CSF 유전자를 이입시킨 제한복제성 헤르페스바이러스 벡터를 이용한 종양백신의 유전자 치료)

  • Kim Se-Heon;Choi Eun-Chang;Kim Han-Su;Chang Jung-Hyun;Kim Ji-Hoon;Kim Kwang-Moon
    • Korean Journal of Head & Neck Oncology
    • /
    • v.19 no.1
    • /
    • pp.25-33
    • /
    • 2003
  • Background and Objectives: The Herpes Simplex type 2 Defective Infectious Single Cycle virus (DISC virus) is attenuated virus originally produced as viral vaccines but are also efficient gene transfer vehicle. The main goals of this study were to examine the efficiencies of the gene transfer using DISC vectors for various head and neck squamous cell carcinoma cell lines and to evaluate the efficacy of vaccination with DISC virus carrying a immunomodulatory genes (GM-CSF) as cancer therapy in a organotopic oral cavity squamous cell cancer model. Materials and Methods : We determinated the gene transfer efficiency of DISC virus by x-gal stain method and proved gene and protein expression of DISC-GMCSF transfected SCCVII cells by RT-PCR and ELISA method. Also we evaluated the ex vivo vaccination effects of SCCVII/GMCSF (DISC-GMCSF transfected SCCVII vaccine) vaccine on preventing the recurrence of micro-residual tumor. After the vaccination of SCCVII/GMCSF, specific cytotoxic T-cell responses was evaluated by CTL assay. Results: At an MOI of 10 DISC virus showed 64-88% of transfection rates in various head and neck squamous cancer cell lines. SCCVII cells transduced by DISC virus vector (MOI=10) carrying the GM-CSF gene, produced 4.5 nanogram quantities of GM-CSF per $10^6$ cells. In vivo vaccination using tumor cells transduced ex vivo with DISC-GMCSF resulted in better protection rate against subsequent tumor recurrence in organotopic oral cavity cancer model. Although tumor free survival rate was not statistically significantly increased in vaccination group (p=0.078), tumor specific cytotocic T-cell responses were significantly increased in SCCVII/GMCSF vaccination group. Conclusion: These data demonstrate that; 1) The DISC virus vector is capable of efficient gene transfer to various head and neck squamous cancer cell lines, 2) GM-CSF secreting genetically modified tumor vaccine (SCCVII/GMCSF) efficiently protected against tumor recurrence in organotopic micro-residual oral cavity cancer model and produced tumor specific cytotoxic T-cell response. DISC virus-mediated, cytokine gene transfer may prove to be useful as a clinical therapy for head and neck cancers.

Tumor targeted gene therapy (종양 표적 유전자 치료)

  • Kang, Joo-Hyun
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.40 no.5
    • /
    • pp.237-242
    • /
    • 2006
  • Knowledge of molecular mechanisms governing malignant transformation brings new opportunities for therapeutic intervention against cancer using novel approaches. One of them is gene therapy based on the transfer of genetic material to an organism with the aim of correcting a disease. The application of gene therapy to the cancer treatment has led to the development of new experimental approaches such as suicidal gene therapy, inhibition of oncogenes and restoration of tumor-suppressor genes. Suicidal gene therapy is based on the expression in tumor cells of a gene encoding an enzyme that converts a prodrug into a toxic product. Representative suicidal genes are Herpes simplex virus type 1 thymidine kinase (HSV1-tk) and cytosine deaminase (CD). Especially, physicians and scientists of nuclear medicine field take an interest In suicidal gene therapy because they can monitor the location and magnitude, and duration of expression of HSV1-tk and CD by PET scanner.

Herpes Simplex Virus Infection after Corrective Rhinoplasty through External Approach: Two Case Reports (외접근 비교정술 후 발생한 단순 포진 바이러스 감염 치험례)

  • Kim, Hong Il;Hwang, So Min;Ahn, Sung-Min;Lim, Kwang Ryeol;Jung, Yong Hui;Song, Jennifer K.;Jeong, Jae Yong
    • Archives of Craniofacial Surgery
    • /
    • v.13 no.1
    • /
    • pp.68-71
    • /
    • 2012
  • Purpose: Eczema herpeticum, caused by herpes simplex virus, is an infectious disease involving skin and internal organs. Varieties of physiologic, psychosocial, or environmental stress reactivate reservoir virus which exists in the trigeminal nerve ganglia. Authors report rare cases of nasal eczema herpeticum following corrective rhinoplasty. Methods: First case, 22-year-old female underwent corrective rhioplasty through an external approach in a local clinic. She developed progressive and painful erythema, nodules and vesicles on nose on the 9th day postoperatively. This unfamiliar lesion lead to a misdiagnosis as a bacterial infection, and had accelerated its progress to the trigeminal innervation of the nasal unit. Second case, a 23-year-old female underwent corrective rhinoplasty by external lateral osteotomy. Ten days after the surgery, disruption occurred on the external osteotomy site, and the ulceration gradually worsened. The surgeon misdiagnosed it as secondary bacterial infection and only an antibacterial agent was applied. Results: Both cases were healed effectively without any complication with proper wound dressing and antiviral therapy, and show no sequelae during an 8-month follow-up period. Conclusion: Eczema herpeticum is rare in the field of plastic surgery, but it should be kept in mind that secondary bacterial infections may lead to serious complications such as full-thickness skin loss. Thus, acknowledgement of the patient's past history regarding perioral or intraoral lesion may provide the surgeon with the possible expectancy of eczema herpeticum. Thus, if anyone develops eczema herpeticum, following facial plastic surgery, early diagnosis and immediate proper antiviral therapy will allow fast recovery without serious complications.

Construction of an expression vector with SV40 DNA in a mammalian cell (SV 40 DNA를 이용한 포유동물의 유전자 운반체 개발)

  • 정민혜;김상해;전희숙;노현모
    • Korean Journal of Microbiology
    • /
    • v.25 no.3
    • /
    • pp.165-172
    • /
    • 1987
  • An expression vector in a mammalian cell was constructed using the origin of replication (OR) and the promoters of SV40. The plasmid pSVOE was constructed by inserting SV40 DNA fragment (1, 118bp) containing SV40 OR and promoters into pBR322-1, and then a multiple cloning sequence was inserted at the immediate downstream of the late promoter of SV40 in the pSVOE vector. The plasmid was named pSVML. As a selection marker, thymidine kinase gene of herpes simplex virus with its promoter was inserted into EcoRI site of pSVML and the recombinant was named pSVML-TKp. To test the expression capacity of foreigen gene inserted at the multiple cloning site of pSVML, the thymidine kinase gene without its own promoter was inserted at the BamHI site of pSVML. The recombinant was named pSVML-TK. These plasmids, pSVML-TKp and pSVML-TK, were transfected into COS cells with calcium phosphate precipitation method. The thymidine kinase activity was significantly increased in both transfected cells.

  • PDF

Constructions of a Transfer Vector Containing the gX Signal Sequence of Pseudorabies Virus and a Recombinant Baculovirus

  • Lee, Hyung-Hoan;Kang, Hyun;Kim, Jung-Woo;Hong, Seung-Kuk;Kang, Bong-Joo;Song, Jae-Young
    • Journal of Microbiology and Biotechnology
    • /
    • v.9 no.5
    • /
    • pp.541-547
    • /
    • 1999
  • Constructions of a transfer vector and a recombinant baculovirus using the thymidine kinase gene of the Herpes simplex virus type 1 strain F (HSV -1) were carried out. Newly cloned transfer vector, pHcgXIIIB, was constructed by insertion of the glycoprotein gX gene signal peptide sequence of Pseudorabies virus into the baculovirus vector pHcEV-IV. The gX sequence was inserted just downstream from the promoter for the polyhedrin gene of the Hyphantria cunea nuclear polyhedrosis virus (HcNPV). HSV-1 thymidine kinase(tk) gene (1.131 kb) was used as a candidate gene for transferring into the baculovirus expression system. The tk gene was inserted into a BamHI site downstream from the gX sequence-promoter for the polyhedrin gene in the pHcgXIIIB transfer vector and was transferred into the infectious lacZ-HcNPV expression vector. Recombinant virus was isolated and was named gX-TK-HcNPV. The recombinant virus produced a 45 kDa gX-TK fusion protein in Spodoptera frugiperda cells, which was confirmed by Western blot analysis. Microscopic examination of gX-TK-HcNPV-infected cells revealed normal multiplication. Fluorescent antibody staining indicated that the gX-TK fusion protein was present in the cytoplasm. These results indicated that the transfer vector successfully transferred the gX-tk gene into the baculovirus expression system.

  • PDF

Designs and Syntheses of Oxathiin Carboxanilide Analogues and their Antiviral Activities

  • Hahn, Hoh-Gyu;Rhee, Hee-Kyung;Lee, Chong-Kyo;Whang, Kyu-Ja
    • Archives of Pharmacal Research
    • /
    • v.23 no.4
    • /
    • pp.315-323
    • /
    • 2000
  • Syntheses of new analogues of oxathiin carboxanilide (UC84) and their antiviral activities were described. The heterocyclic carboxylic acids including oxathiins (4), thiazines (9) and dithiins (13) in which the methyl was replaced either by lipophilic trifluoromethyl- or bulky phenylgroup were synthesized starting from $\beta$-keto esters (5). Reaction of 4, 9 and 13 with thionyl chloride followed by treatment of the substituted aniline 22 gave the corresponding carboxanilides (24a~24f). The carboxanilides were subjected to Laweson's reagent the corresponding thiocarboxanilides (24g~24k). The antiviral activities of the synthesized compounds against human immunodeficiency virus type 1 (HIV-1), poliovirus type 1 (PV-1 ), coxsackie B virus type 3 (CoxB-3), vesicular stomatitis virus (VSV) and herpes simplex virus type 1 (HSV-1) were presented. The antiviral activity against HIV-1 of dithiin carboxanilide (24e) was similar with that of UC84 (24a). The corresponding thiocarboxanilides (24g~24k) showed higher inhibitory activity against HIV-1 than the carboxanilides (24a, 24b, 24d, 24e). The compounds in which ether the lipophilic trifluorormethyl substituents (24d, 24f, 24i ,24k) or bulky phenyl substituent is present in the heterocyclic compounds showed lower inhibitory activity than that of the methyl substituents is present in the compounds against the HIV-1. But the trifluoromethylated dithiin (24f) showed higher inhibitory activity against PV-1 and CoxB-3 virus than commercial antiviral agents, ribavirin (RV).

  • PDF

Infection and Pathogenesis Mechanisms of Marek's Disease Virus (마렉병 바이러스 감염과 병원성 발현 기전)

  • Jang, H.K.;Park, Y.M.;Cha, S.Y.;Park, J.B.
    • Korean Journal of Poultry Science
    • /
    • v.35 no.1
    • /
    • pp.39-55
    • /
    • 2008
  • Like the other herpesviruses, the virion of MDV consists of an envelope, which surrounds an amorphous tegument. Within the tegument, and icosahedral capsid encloses a linear double-stranded DNA core. Although the genome structure of MDV indicates that it is an ${\alpha}-herpesvirus$ like herpes simplex and varicella-zoster viruses, biological properties indicate MDV is more akin to the ${\gamma}-herpesvirus$ group, which includes Epstein-Barr and Kaposi's sarcoma herpesviruses. These herpesviruses replicate lytically in lymphocytes, epithelial and fibroblastic cells, and persist in lymphoblastoid cells. MDV has a complex life cycle and uses two means of replication, productive and non-productive, to exist and propagate. The method of reproduction changes according to a defined pattern depending on changes in virus-cell interactions at different stages of the disease, and in different tissues. Productive (lytic) interactions involve active invasion and take-over of the host cell, resulting in the production of infectious progeny virions. However, some herpesviruses, including MDV, can also establish a non-productive (abortive) infection in certain cell types, resulting in production of cell-associated progeny virus. Non-productive interactions represent persistent infection, in which the viral genome is present but gene expression is limited, there is no structural or regulatory gene translation, no replication, no release of progeny virions and no cell death. Reactivation of the virus is rare, and usually the infectious virus can be re-isolated only after cultivation in vitro. MDV establishes latency in lymphoid cells, some of which are subsequently transformed. In this review article, recent knowledges of the pathogenesis mechanisms followed by MDV infection to sensitive cells and chickens are discussed precisely.