• Title/Summary/Keyword: herbicide-resistant

Search Result 174, Processing Time 0.036 seconds

Occurrence and Distribution of Herbicide Resistant Weeds in the Paddy Field of Chungnam Province (충남지역에서의 제초제 저항성 논 잡초 발생 및 분포)

  • Won, Ok Jae;Jia, Wei Qiang;Lee, Jeung Joo;Kim, Jin-Won;Lee, Jeongran;Park, Kee Woong
    • Weed & Turfgrass Science
    • /
    • v.7 no.3
    • /
    • pp.201-208
    • /
    • 2018
  • This study was conducted to investigate the occurrence and distribution of herbicide resistant weeds at rice fields in Chungnam province of Korea in 2017. Herbicide-resistant weeds occurred in 64,782 ha, which comprise 47.0% of the total paddy field area of Chungnam province. The infested area of herbicide resistant weeds was estimated in Seosan-si (11.9%), Nonsan-si (11.1%), Dangjin-si (10.9%), Boryeong-si (9.2%) and Asan-si (7.8%). The most dominant herbicide resistant weeds in rice fields were Monochoria vaginalis, followed by Lindernia dubia, Schoenoplectus juncoides, Echinochloa oryzicola, Cyperus difformis and Sagittaria trifolia. Herbicide resistant M. vaginalis, L. dubia, and S. juncoides occurred throughout Chungnam province, and herbicide resistant S. trifolia was only found in Dangjin-si. Compared with the 2011 survey, the infested area of herbicide-resistant weeds decreased, but the incidence rates were similar. The herbicide rotation with different modes of actions across growing seasons is recommended to control herbicide-resistant weeds in the infested fields. It is necessary to monitor herbicide resistance regularly and conduct integrated herbicide resistance management in this area.

Identification of Herbicide-Resistant Barnyardgrass (Echinochloa crus-galli var. crus-galli) Biotypes in Korea

  • Won, Ok Jae;Lee, Jeung Joo;Eom, Min Yong;Suh, Su Jeoung;Park, Su Hyuk;Hwang, Ki Seon;Pyon, Jong Yeong;Park, Kee Woong
    • Weed & Turfgrass Science
    • /
    • v.3 no.2
    • /
    • pp.110-113
    • /
    • 2014
  • The continuous use of acetolactate synthase (ALS) and acetyl-CoA carboxylase (ACCase) inhibitors has led to the selection of herbicide resistant barnyardgrass populations in direct-seeded rice fields of Korea. This study was conducted to identify herbicide resistant barnyardgrass biotypes and to determine the cross- and multiple-resistance of them. 25% of the population collected from Taeahn was partially resistant to ACCase inhibitors and 22% collected from Kimjae were partially resistant to ALS inhibitors. However, 8.2% of the population from both sites was resistant to ALS and ACCase inhibitors. Resistance to sulfonylurea herbicide, flazasulfuron was identified from two barnyardgrass accessions collected from both Taeahn and Kimjae. One barnyardgrass accession from both sites was resistant to ACCase inhibitor, sethoxydim. The cross-resistance to ALS inhibitors was identified at one barnyardgrass accession from Taeahn and at two accessions from Kimjae. Further, crossresistance to ACCase inhibitors was also identified at barnyardgrass accessions from Taeahn and Kimjae. Multiple-resistance to flazasulfuron and sethoxydim was determined at four barnyardgrass accessions from Taeahn and at six accessions from Kimjae. Therefore, the herbicide mixture and sequences within a growing season or the herbicide rotation with different modes of actions across growing seasons are recommended to control herbicide-resistant barnyardgrass in infested fields.

Current Status and Perspective of Weed Management in Herbicide-Resistant Crops (제초제 저항성작물에서 잡초관리기술 동향 및 전망)

  • Pyon, Jong Yeong;Chang, Kyu Seob;Lee, Jeung Joo;Park, Kee Woong
    • Weed & Turfgrass Science
    • /
    • v.2 no.3
    • /
    • pp.221-229
    • /
    • 2013
  • This paper reviews current status of weed control practices in herbicide-resistant crops to examine weed management strategies in cope with cropping herbicide-resistant crops in the near future. Herbicide-resistant crops were rapidly adopted weed management technologies due to broad-spectrum weed control without crop injury. Transgenic glyphosate-resistant cultivars in soybean, corn, canola, and cotton were adopted to manage weeds at lower cost in a simplified weed management system. Dual stack crops with glyphosate and glufosinate resistance were developed to control glyphosate resistant weeds in corn, soybean and cotton. New multiple herbicide-resistant crops with resistance to glyphosate and glufosinate, acetolactate synthase (ALS) inhibitors, synthetic auxin herbicides, 4-hydroxyphenyl pyruvate dioxygenase (HPPD) inhibitors or acetyl Coenzyme A carboxylase (ACCase) inhibitors will expended the utility of existing herbicide technologies to manage the evolution of resistant weeds. However, herbicide resistant crops alone cannot solve weed problems and thus studies on diverse weed managements using an array of alternating herbicides of mode of action, mechanical, and cultural practices are needed for integrated weed management systems in the future.

Herbicide-resistant Transgenic Mongolian Bentgrass (Agrostis mongolica Roshev.) obtained by Agrobacterium-mediated Transformation

  • Vanjildorj, Enkhchimeg;Bae, Tae-Woong;Song, In-Ja;Kim, Kyung-Moon;Lim, Yong-Pyo;Lee, Hyo-Yeon
    • Korean Journal of Breeding Science
    • /
    • v.40 no.2
    • /
    • pp.128-135
    • /
    • 2008
  • Herbicide resistance is the most common trait being tested and thus herbicide?resistant genetically modified plants are now the most widely cultivated worldwide. Here we developed herbicide?resistant transgenic Agrostis mongolica Roshev. by employing an efficient Agrobacterium?mediated transformation procedure with 25.2% of transformation efficiency. The identification and employment of regenerable and reproducible type of callus was one of the most critical factors to ensure success in this study. PCR analysis confirmed that the bar transgene was integrated into the genome of transgenic plants. The expression of 35S?bar gene was confirmed by Northern blot analysis. The transgenic plants showed complete resistance to herbicide, indicating that the bar gene is functional in transgenic plants.

Fact-Finding Survey of Herbicide Use at Farmer's Level and Distribution of Herbicide Resistant Weeds in Paddy Field of Jeonbuk Province, Korea (전북지역 제초제 저항성 논 잡초 발생분포 및 제초제 사용실태)

  • Cho, Seung-Hyun;Kwon, Seog-Ju;Song, Young-Eun;Lee, Deok-Ryeol;Song, Young-Ju;Kim, Chung-Kon;Lee, In-Yong
    • Weed & Turfgrass Science
    • /
    • v.3 no.4
    • /
    • pp.312-317
    • /
    • 2014
  • This study was conducted to obtain basis information for effective weed control by the fact-finding survey of herbicides use at farmer's level and distribution of herbicide resistant weeds in paddy field of Jeonbuk province, Korea. The distributions of major paddy field weeds and frequently used herbicide according to the survey were as follows. The dominant weeds in rice paddy field were Echinochloa crus-galli, Eleocharis kuroguwai, Scirpus juncoides, Monochoria vaginalis, etc.. Preferred herbicides widely used by farmers were ranked in the following order, early and middle treatment (48.0%), treatment before transplanting (36.7%) and foliar treatment (15.3%). The occurrence of herbicide-resistant weeds according to collected paddy soils was as follows. The occurring area of herbicide-resistant weeds was 24,413 ha, approximately 18.4% of rice cultivation area. Herbicide-resistant weeds were occurred in four species. The order of occurrence were Scirpus juncoides (39.0%) > Monochoria vaginalis (27.8%) > Echinochloa crus-galli (16.6%) and Cyperus difformis (16.6%). This information could be useful for estimation of future herbicide-resistant weed and establishment of herbicide-resistant weed control methods in Jeonbuk province, Korea.

Effective Herbicides for Control of Sulfonylurea-Resistant Monochoria vaginalis in Paddy Field

  • Kuk, Yong-In;Kwon, Oh-Do
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.48 no.4
    • /
    • pp.286-291
    • /
    • 2003
  • Monochoria vaginalis is one of the most troublesome resistant weeds in Korean rice culture. Thus, the objectives of this study were to evaluate the response of M. vaginalis resistant to sulfonylurea(SU) herbicides and to determine alternative herbicides for the control of resistant M. vaginalis in direct seeded and transplanted rice culture in Korea. In greenhouse studies, the resistant biotype was 31-, 38-, 3172-, and 7-fold more resistant to ben-sulfuron-methyl, cyclosulfamuron, imazosulfuron, and pyrazosulfuron-ethyl, respectively, than the susceptible biotype, indicating cross-resistance to the SU herbicides used in this study. Non-SU herbicides, butachlor, carfentrazone-ethyl, mefenacet, pretilachlor, pyrazolate, and thiobencarb, several SU herbicide-based mixtures, ethoxysulfuron plus fentrazamide, pyrazosulfuron-ethyl plus pyrazolate plus simetryn, and non-SU herbicide-based mixtures, pyrazolate plus butachlor, pyrazolate plus pretilachlor, simetryn plus molinate, carfentrazone-ethyl plus butachlor, and carfentrazone-ethyl plus thiobencarb can be used to control both the resistant and susceptible biotypes of M. vaginalis when applied before the second leaf stage. In the field experiment, the resistant biotype of M. vaginalis that survived from the paddy fields treated with a SU herbicide-based mixture could effectively be controlled by using mixtures of bentazone plus MCPA, bentazone plus mecoprop-P, and bentazone plus 2,4-D when applied at 2 or 4 main leaves. Our results suggest that the SU-resistant M. vaginalis had not developed multiple resistances to herbicides with different modes of action. In particular, bentazone plus MCPA and bentazone plus mecoprop-P were effective control measures after failure to control resistant M. vaginalis in Korean rice culture.

Soil Microbial Community Assessment for the Rhizosphere Soil of Herbicide Resistant Genetically Modified Chinese Cabbage

  • Sohn, Soo-In;Oh, Young-Ju;Ahn, Byung-Ohg;Ryu, Tae-Hoon;Cho, Hyun-Suk;Park, Jong-Sug;Lee, Ki-Jong;Oh, Sung-Dug;Lee, Jang-Yong
    • Korean Journal of Environmental Agriculture
    • /
    • v.31 no.1
    • /
    • pp.52-59
    • /
    • 2012
  • BACKGROUND: Cultivation of genetically modified(GM) crops rapidly has increased in the global agricultural area. Among those, herbicide resistant GM crops are reported to have occupied 89.3 million hectares in 2010. However, cultivation of GM crops in the field evoked the concern of the possibility of gene transfer from transgenic plant into soil microorganisms. In our present study, we have assessed the effects of herbicide-resistant GM Chinese cabbage on the surrounding soil microbial community. METHODS AND RESULTS: The effects of a herbicide-resistant genetically modified (GM) Chinese cabbage on the soil microbial community in its field of growth were assessed using a conventional culture technique and also culture-independent molecular methods. Three replicate field plots were planted with a single GM and four non-GM Chinese cabbages (these included a non-GM counterpart). The soils around these plants were compared using colony counting, denaturing gradient gel electrophoresis and a species diversity index assessment during the growing periods. The bacterial, fungal and actinomycetes population densities of the GM Chinese cabbage soils were found to be within the range of those of the non-GM Chinese cabbage soils. The DGGE banding patterns of the GM and non-GM soils were also similar, suggesting that the bacterial community structures were stable within a given month and were unaffected by the presence of a GM plant. The similarities of the bacterial species diversity indices were consistent with this finding. CONCLUSION: These results indicate that soil microbial communities are unaffected by the cultivation of herbicide-resistant GM Chinese cabbage within the experimental time frame.

Effective Weed Control in Paddy Field Simultaneously Dominated by Herbicide-Resistant Weeds, Echinochloa oryzoicola, Monochoria vaginalis and Scirpus juncoides (제초제 저항성 잡초 강피, 물달개비, 올챙이고랭이 동시 우점한 논에서 효과적인 제초관리)

  • Park, Tae Seon;Cho, Hyeoun Suk;Hwang, Jae Bok;Ku, Bon il;Kim, Hag Sin;Seo, Myung Chul;Park, Hong Kyu;Lee, Keon Hui
    • Weed & Turfgrass Science
    • /
    • v.4 no.3
    • /
    • pp.151-158
    • /
    • 2015
  • This study was conducted to establish the effective weed management methods in rice field simultaneously dominated by the herbicide resistant Echinochloa oryzicola, Monochoria vaginalis and Scirpus juncoides. Herbicides registered for use before transplanting, oxadiazon 12% EC, pyrazolate 36% SC, pretilachlor 14% EC and thiobencarb 50% EC were effective until 0.5 leaf stage of herbicide resistant Echinochloa oryzoides. Herbicides registered for use after transplanting, fentrazamide 1% GR and mefenacet 18% SC were effective until 2 leaf stage of herbicide resistant Echinochloa oryzicola and triafamone 0.98% SC was possible to control up to 4 leaf stage. HPPD inhibitors, benzobicyclon, mesotrione and tefuryltrione SC, were simultaneously effective to SU herbicide-resistant Monochoria vaginalis and Scirpus juncoides. Herbicides registered for use before transplanting, benzobicyclon + oxadiargyl EC out of the tested herbicide was most effective in rice field simultaneously dominated by the herbicide resistant Echinochloa oryzicola, Monochoria vaginalis and Scirpus juncoides. Its effectiveness rises in proportion to flooding duration. Mazosulfuron GR, a herbicides registered for use after transplanting was most effective without phytotoxicity until 60 days after transplanting in rice field simultaneously dominated by the herbicide resistant Echinochloa oryzicola.

Evaluation of Nutritional Safety for the Herbicide-Resistant Rice in Growing Male Rats (성장기 흰쥐에서 제초제 저항성 쌀의 급여에 대한 영양적 안전성 평가)

  • 이성현;박홍주;조소영;전혜경;박용환;정미혜;박선희
    • Journal of Nutrition and Health
    • /
    • v.36 no.10
    • /
    • pp.1030-1035
    • /
    • 2003
  • This study was conducted to evaluate the safety of herbicide-resistant rice, a genetically modified organism (GMO) developed by the Rural Development Administration, in Sprague-Dawley rats. The nutrient content of herbicide-resistant polished and brown cooked rice was compared with that of conventional Ilpum polished and brown cooked rice to assess composition equivalence. Compositional analysis was performed to measure proximates, fiber, and minerals before animal feeding. Growing male rats were fed one of the following four diets for six weeks: Ilpum polished cooked rice (IP) and Ilpum brown cooked rice (IB) as a non-GMO and herbicide-resistant polished cooked rice (GP) and brown cooked rice (GB) as a GMO. We checked clinical symptoms (anorexia, salivation, diarrhea, polyuria, anuria, fecal change) every day, food intake, change of body weight twice a week, and serum biochemistry and organ weights after 6 weeks of experimental feeding among the four groups. Nutrient content of the herbicide-resistant rice was similar to that of the non-transgenic control and was within the published range observed for non-transgenic rice. We could not find any significant difference in the above-mentioned items as the index to be checked in the animals fed the GMO. These results suggest that the nutrient content of genetically modified herbicide-resistant rice is compositionally equivalent to that of conventional Ilpum rice and that growing male rats fed herbicide-resistant rice are no different from those fed Ilpum rice, non-GMO for 6 weeks.

Herbicide Resistant Cabbage (Brassica oleracea ssp. capitata) Plants by Agrobacterium-mediated Transformation

  • Lee, Yeon-Hee;Lee, Seung-Bum;Suh, Suk-Chul;Byun, Myung-Ok;Kim, Ho-Il
    • Journal of Plant Biotechnology
    • /
    • v.2 no.1
    • /
    • pp.35-41
    • /
    • 2000
  • Transgenic cabbage (Brassica oleracea ssp. capitata) plants resistant to the commercial herbicide Bast $a^{R}$ were obtained by Agrobacterium tumefaciens - mediated transformation. Hypocotyl segments of in vitro grown plants were infected with Agrobacterium tumefaciens LBA 4404 harboring plasmid pMOG6-Bar which contains hpt and bar genes. Explants were cultured on callus induction medium (MS basal medium + 1 mg/L NAA + 2 mg/L BA + 2 mg/L AgN $O_3$+ 100 mg/L carbenicillin + 250 mg/L cefotaxime) supplemented with 15 mg/L hygromycin. Hygromycin resistant calluses were transferred to shoot regeneration medium (MS basal medium + 0.1 mg/L NAA + 2 mg/L BA + 3% sucrose + 2 mg/L AgN $O_3$+ 15 mg/L hygromycin + 250 mg/L cefotaxime + 100 mg/L carbenicillin). In order to induce roots, elongated shoots were placed on the MS medium without plant growth regulators and hygromycin. Southern blot analysis of several putative transgenic plants indicated that one to five intact copies of Apt and bar genes were incorporated into the genome. Expression of bar gene was confirmed by Northern blot analysis and by herbicide resistant phenotype. Seed progeny from self-pollinated transformants expressed the herbicide resistance and showed Mendelian segregation of the introduced gene.e.

  • PDF