• Title/Summary/Keyword: hepatic uptake

Search Result 123, Processing Time 0.023 seconds

Clinical Application of $^{18}F-FDG$ PET in Bile Duct Cancer (담도암에서 $^{18}F-FDG$ PET의 임상 이용)

  • Yun, Mi-Jin;Kim, Tae-Sung;Hwang, Hee-Sung
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.42 no.sup1
    • /
    • pp.66-70
    • /
    • 2008
  • Reports about FDG PET in biliary tumor are limited and there are almost no reports regarding its efficacy. Biliary tumor is divided to intrahepatic and extrahepatic bile duct cancer, and intrahepatic bile duct cancer can be further divided to peripheral type which occurs at lobular duct and hilar type which occurs at hepatic hilum. Surgical resection is the only curative method for bile duct tumor, and accurate staging plays an important role in deciding treatment modality. Among intrahepatic bile duct tumors, peripheral type and hilar type have the same histological characteristics, but different clinical manifestations and tumor growth pattern. On PET image, FDG uptake is also different between peripheral type and hilar type. Most of the former shows high FDG uptake at primary and metastasis site so it is very useful for determining stage and changing treatment plans. However, the later is diversified among low uptake and very high uptake. The FDG uptake pattern of hilar type is similar to that of extrahepatic bile duct cancer, and mucinous component is an important factor, which affects FOG uptake. When tumor cells are scattered in desmoplatsic stroma, then FDG uptake is low as well. In contrast, when FDG uptake is high, it is likely to be tubular type which has high tumor density. Tumor growth pattern also affects FDG uptake. Nodular type mostly takes higher FDG compared to infiltrative type. There are many cases where benign inflammatory diseases take high FDG that PET alone can not distinguish malignant lesion from benign lesion. In conclusion, studies about PET using FDG are still limited. Thus, it is hard to make accurate conclusion about the roles of PET or PET/CT in biliary cancers, but peripheral type intrahepatic bile duct cancers and mass forming hilar and extrahepatic bile duct cancers appear to be good indications performing FDG PET or PET/CT.

Increased Hepatic Lipogenesis Elevates Liver Cholesterol Content

  • Berger, Jean-Mathieu;Moon, Young-Ah
    • Molecules and Cells
    • /
    • v.44 no.2
    • /
    • pp.116-125
    • /
    • 2021
  • Cardiovascular diseases (CVDs) are the most common cause of death in patients with nonalcoholic fatty liver disease (NAFLD) and dyslipidemia is considered at least partially responsible for the increased CVD risk in NAFLD patients. The aim of the present study is to understand how hepatic de novo lipogenesis influences hepatic cholesterol content as well as its effects on the plasma lipid levels. Hepatic lipogenesis was induced in mice by feeding a fat-free/high-sucrose (FF/HS) diet and the metabolic pathways associated with cholesterol were then analyzed. Both liver triglyceride and cholesterol contents were significantly increased in mice fed an FF/HS diet. Activation of fatty acid synthesis driven by the activation of sterol regulatory element binding protein (SREBP)-1c resulted in the increased liver triglycerides. The augmented cholesterol content in the liver could not be explained by an increased cholesterol synthesis, which was decreased by the FF/HS diet. HMG-CoA reductase protein level was decreased in mice fed an FF/HS diet. We found that the liver retained more cholesterol through a reduced excretion of bile acids, a reduced fecal cholesterol excretion, and an increased cholesterol uptake from plasma lipoproteins. Very low-density lipoproteintriglyceride and -cholesterol secretion were increased in mice fed an FF/HS diet, which led to hypertriglyceridemia and hypercholesterolemia in Ldlr-/- mice, a model that exhibits a more human like lipoprotein profile. These findings suggest that dietary cholesterol intake and cholesterol synthesis rates cannot only explain the hypercholesterolemia associated with NAFLD, and that the control of fatty acid synthesis should be considered for the management of dyslipidemia.

Hepatobiliary Excretion of Tributylmethylamonium in Rats with Lipopolysaccharide-Induced Acute Inflammation

  • Lee, In-Kyung;Lee, Young-Mi;Song, Im-Sook;Chung, Suk-Jae;Kim, Sang-Geon;Lee, Myung-Gull;Shim, Chang-Koo
    • Archives of Pharmacal Research
    • /
    • v.25 no.6
    • /
    • pp.969-972
    • /
    • 2002
  • The alteration in the pharmacokinetic behaviors of organic cations (OCs) in rats during acute inflammation (AI) was investigated. AI was induced by an intraperitoneal injection of lipopolysaccharide (LPS, 5 mg/kg) 24 hr prior to the start of pharmacokinetic studies. Tributylmethylammonium (TBuMA) was selected as a model OC since it is largely excreted into bile, and is neither metabolized nor binds to proteins in the body. When TBuMA was administered intravenously to AI rats at a dose of 6.6 $\mu$mole/kg, the AUC was increased, while biliary excretion (i.e., cumulative amount and apparent clearance) was decreased compared to normal rats. When TBuMA was administered intravenously to AI rats at a constant rate (i.e., a bolus injection at a dose of 1.5 $\mu$mole/kg followed by a constant infusion at a rate of 1.5 $\mu$mole/kg/hr for 165 min), steady-state concentrations of plasma and liver concentrations of TBuMA were increased significantly, while in vivo hepatic uptake (amount) and canalicular excretion (clearance) were decreased. These results are consistent with a hypothesis in which both the sinusoidal uptake of TBuMA into hepatocytes via the OCT1 and the canalicular excretion of the compound from hepatocytes via the P-gp are decreased by LPS-induced AI.

Effect of a New Hepatoprotective Agent, YH-439, on the Hepatobiliary Transport of Organic Cations (OCs): Selective Inhibition of Sinusoidal OCs Uptake without Influencing Glucose Uptake and Canalicular OCs Excretion

  • Hong Soon Sun;Li Hong;Choi Min Koo;Chung Suk Jae;Shim Chang Koo
    • Archives of Pharmacal Research
    • /
    • v.28 no.3
    • /
    • pp.330-334
    • /
    • 2005
  • The effect of a new hepatoprotective agent, YH-439, on the hepatobiliary transport of a model organic cation (OC), TBuMA (tributylmethylammonium), was investigated. The area under the plasma concentration-time curve (AUC) from time zero to 4 h following iv administration of TBuMA (6.6 $\mu$mol/kg) was increased significantly when YH-439 in corn oil (300 mg/kg) was orally administered to rats 24 h prior to the experiment. Nevertheless, the cumulative biliary excretion of TBuMA remained unchanged. As a consequence, the apparent biliary clearance ($CL_b$) of TBuMA was decreased significantly as a result of YH-439 pretreatment, consistent with the fact that the in vivo excretion clearance of TBuMA across the canalicular membrane ($CL_{exc}$) was not changed by the pretreatment. The in vitro uptake of TBuMA into isolated hepatocytes was decreased by one half by the pretreatment, owing to a decrease in the apparent V$_{max}$ and $CL_{linear}$, but the $K_m$ for the process remained constant. Most interestingly, however, the sinusoidal uptake of glucose, a nutrient, into hepatocytes was not influenced by the pretreatment, suggesting the YH-439 pretreatment specifically impaired the sinusoidal uptake of OCs. Thus, the OC-specific inhibition of hepatic uptake, without influencing the uptake of glucose, a nutrient, appeared to be associated with the hepatoprotective activity of YH-439.

Ursodeoxycholic acid decreases age-related adiposity and inflammation in mice

  • Oh, Ah-Reum;Bae, Jin-Sik;Lee, Junghoon;Shin, Eunji;Oh, Byung-Chul;Park, Sang-Chul;Cha, Ji-Young
    • BMB Reports
    • /
    • v.49 no.2
    • /
    • pp.105-110
    • /
    • 2016
  • Ursodeoxycholic acid (UDCA), a natural, hydrophilic nontoxic bile acid, is clinically effective for treating cholestatic and chronic liver diseases. We investigated the chronic effects of UDCA on age-related lipid homeostasis and underlying molecular mechanisms. Twenty-week-old C57BL/6 male and female mice were fed a diet with or without 0.3% UDCA supplementation for 25 weeks. UDCA significantly reduced weight gain, adiposity, hepatic triglyceride, and hepatic cholesterol without incidental hepatic injury. UDCA-mediated hepatic triglyceride reduction was associated with downregulated hepatic expression of peroxisome proliferator-activated receptor-γ, and of other genes involved in lipogenesis (Chrebp, Acaca, Fasn, Scd1, and Me1) and fatty acid uptake (Ldlr, Cd36). The inflammatory cytokines Tnfa, Ccl2, and Il6 were significantly decreased in liver and/or white adipose tissues of UDCA-fed mice. These data suggest that UDCA exerts beneficial effects on age-related metabolic disorders by lowering the hepatic lipid accumulation, while concurrently reducing hepatocyte and adipocyte susceptibility to inflammatory stimuli.

Different Pharmacokinetics of Aucubin in Rats of Carbon tetrachloride and D-Galactosamine-induced Hepatic Failure (사염화탄소와 갈락토사민 간장해 시의 오큐빈의 체내동태 차이)

  • 김미형;심창구;장일무
    • YAKHAK HOEJI
    • /
    • v.37 no.4
    • /
    • pp.383-388
    • /
    • 1993
  • Pharmacokinetics of aucubin, an irdoid glucoside, was compared in rats of experimental hepatic failure(EHF). EHF was induced by CCI$_{4}$ or D-galactosamine pretreatment. This work was designed to find out any differences in the pharmacokinetics of aucubin that may explain the different protective effect of aucubin on CCI$_{4}$- and galactosamine-induced EHF : aucubin reportedly protected CCI$_{4}$-inducing hepatotoxicity effectively, but did not for galactosamine-hepatotoxicity. EHF was induced by intraperitoneal injection Of CCI$_{4}$(0.9ml/kg) or galactosamine(250 mg/kg) to Wistar rats 24 hr before the pharmacokinetic study. The rats were fasted during the 24 hr. Aucubin was iv injected at a dose of 15 mg/kg and the plasma aucubin was assayed by HPLC. There were no significant differences in the pathophysiologies(body weight, liver weight, GTP, hematocrit, blood cell distrbution and plasma protein binding of aucubin) between the two EHF models except GOP which was significantly (p<0.05) higher in CCI$_{4}$-than in galactosamine-EHF. On the other hand, pharmacokinetics of aucubin such as total cleatance(CL$_{t}$), distribution volume at steady-state(Vd$_{ss}$), and mean residence time(MRT) differed significantly(p<0.05) between the models : for example, CL$_{t}$ was increased two fold by CCI$_{4}$, but not by galaclosamine ; Vd$_{ss}$, in galactosamine-EHF was higher than that in CCI$_{4}$-EHF ; MRT was decreased by CCI$_{4}$, but increased conversely by galactosamine. The increase of CL$_{t}$(and decrease of MRT) in rats of CCI$_{4}$-EHF was contrary to the general expectation for the hepatic failure : most of the hepatic failures have been known to decrease CL$_{t}$ of the administered drugs. Whether the difference in the pharmacokinetics is responsible for the different protective effect of aucubin against the two EHF models is of interest. However, much more studies on biliary excretion, urinary excretion, and hepatic uptake in cellular level should be preceded before any conclusions are made on the role of different pharmacokinetics on the different pharmacology of aucubin.

  • PDF

[ $^{99m}Tc-RBC$ ] Hepatic Scintiscan in focal Hepatic Lesions ($^{99m}Tc-RBC$ 간신티스캔을 이용한 간내 공간점유병소의 감별진단)

  • Lee, Do-Yun;Yoo, Hyung-Sik;Lee, Jong-Tae;Kim, Ki-Whang;Park, Chang-Yun;Park, Chan-H.
    • The Korean Journal of Nuclear Medicine
    • /
    • v.21 no.2
    • /
    • pp.191-197
    • /
    • 1987
  • 39 patients with focal hepatic lesions were evaluated by $^{99m}Tc-RBC$ liver scan. The diagnosis of focal hepatic lesions were made by percutaneous needle biopsy, angiography, surgery, or clinical courses. Thses diagnoses included 24 cases of hemangioma, 7 hepatomas, 6 metastatic disease, 1 abscess, and 1 cyst. 19 hemangiomas showed focal hot activity on delayed static planar images. 3 small deep seated hemangiomas were diagnosed by SPECT that would have been missed by planar images alone. 2 large hemangiomas had no radioisotope uptake within the lesions on delayed images and at surgery cavernous hemangioma with thrombosis, calcification, and fibrosis were found. For hepatic hemangiomas in our series, the sensitivity was 91.7% and the specificity was 100%. The remaining 15 patients including hepatomas, metastatic lesions, cyst and abscess showed cold defect on delayed blood pool images. It is concluded that $^{99m}Tc-RBC$ liver scan should be the choice of primary diagnostic procecure for clinically suspected hepatic hemangioma since it's inexpensive, non-invasive, and readly available.

  • PDF

Hepatic Pseudolymphoma Mimicking a Hypervascular Tumor: A Case Report (과혈관성 종양으로 오인된 간의 가성림프종: 증례보고)

  • Im, Bora;Jang, Suk Ki;Yeon, Jae Woo;Paik, So Ya;Park, Sang Jong;Kim, Hyuk Jung
    • Journal of the Korean Society of Radiology
    • /
    • v.79 no.6
    • /
    • pp.348-353
    • /
    • 2018
  • Hepatic pseudolymphoma is a rare benign liver mass that is characterized by proliferation of non-neoplastic lymphocytes extranodally. To the best of our knowledge, only 46 cases have been reported in the English literature. We described the case of a 75-year-old woman with hepatic pseudolymphoma mimicking a hypervascular tumor. After the histological confirmation of the rectal neuroendocrine tumor, CT scan revealed a 1.0 cm-sized, poorly-defined and low-density nodule in the liver. On MRI, the hepatic nodule showed an arterial enhancement and a low-signal intensity on the hepatobiliary phase. On diffusion-weighted imaging, the hepatic nodule showed a high signal intensity on a high b-value. On fluorodeoxyglucose (FDG) positron emission tomography (PET)/CT, it revealed a high standardized uptake value nodule. The US showed the hypoechoic nodule and the US-guided biopsy confirmed the hepatic pseudolymphoma.

Ischemic Preconditioning Ameliorates Hepatic Injury from Cold Ischemia/Reperfusion

  • PARK Sang-Won;LEE Sun-Mee
    • Biomolecules & Therapeutics
    • /
    • v.13 no.3
    • /
    • pp.127-132
    • /
    • 2005
  • We investigated whether ischemic preconditioning (IPC) protects liver against cold ischemic injury using isolated perfused rat liver. Rat livers were preconditioned by 5 minutes of ischemia and 5 minutes of reperfusion and preserved for 30 hours at $4^{\circ}C$ in University of Wisconsin solution. Livers were then reperfused for 120 minutes. Oxygen uptake and bile flow in ischemic livers markedly decreased during reperfusion. These decreases were prevented by IPC. Portal pressure was elevated in cold ischemic and reperfused livers and this elevation was prevented by IPC. Lactate dehydrogenase and purine nucleoside phosphorylase activities markedly increased during reperfusion. These increases were prevented by IPC. The ratio of reduced glutathione to glutathione disulfide was lower in ischemic livers. This decrease was prevented by IPe. Our findings suggest that IPC protects the liver against the deleterious effect of cold ischemia/reperfusion, and this protection is associated with the reduced oxidative stress.

Evaluation of Adverse Drug Properties with Cryopreserved Human Hepatocytes and the Integrated Discrete Multiple Organ Co-culture (IdMOCTM) System

  • Li, Albert P.
    • Toxicological Research
    • /
    • v.31 no.2
    • /
    • pp.137-149
    • /
    • 2015
  • Human hepatocytes, with complete hepatic metabolizing enzymes, transporters and cofactors, represent the gold standard for in vitro evaluation of drug metabolism, drug-drug interactions, and hepatotoxicity. Successful cryopreservation of human hepatocytes enables this experimental system to be used routinely. The use of human hepatocytes to evaluate two major adverse drug properties: drug-drug interactions and hepatotoxicity, are summarized in this review. The application of human hepatocytes in metabolism-based drug-drug interaction includes metabolite profiling, pathway identification, P450 inhibition, P450 induction, and uptake and efflux transporter inhibition. The application of human hepatocytes in toxicity evaluation includes in vitro hepatotoxicity and metabolism-based drug toxicity determination. A novel system, the Integrated Discrete Multiple Organ Co-culture (IdMOC) which allows the evaluation of nonhepatic toxicity in the presence of hepatic metabolism, is described.