• Title/Summary/Keyword: hematopoietic progenitor cells

Search Result 48, Processing Time 0.027 seconds

Plasminogen Activator Inhibitor-1 as a Radiation-Responsive Gene in Bone Marrow Stromal Cells (골수기질세포에서 방사선 반응 유전자로서의 Plasminogen Activator Inhibitor-1)

  • Song, Jee-Yeon;Kwon, Hyung-Joo;Park, Chan-Kyu;Jo, Deog-Yeon;Lee, Young-Hee
    • Development and Reproduction
    • /
    • v.9 no.1
    • /
    • pp.43-48
    • /
    • 2005
  • Bone marrow stromal cells, a constituent of the niche for hematopoietic stem cells in bone marrow, provide various factors involved in the fate decision of the hematopoietic stem and progenitor cells. Radiation, a widely used anti-cancer therapy, provokes side effects including the damage of the blood cells. Therefore, it is necessary to recover the blood cells shortly after radiation via promoting the differentiation of hematopoietic cells. In this study, we screened genes modulated by radiation in human bone marrow stromal cells in order to understand the mechanism involved in hematopoiesis after radiation. We performed differential display method by using polymerase chain reaction(PCR) and agarose gel electrophoresis. We found plasminogen activator inhibitor-1(PAI-1) was consistently induced by radiation. The significance of the PAI-1 gene modulation is to be determined.

  • PDF

Efficient Gene Delivery into Hematopoietic Stem Cells by Intra-Bone Marrow Injection of Retrovirus (IBM 이식을 통한 골수 조혈 줄기 세포에의 효과적인 유전자 도입)

  • Lee, Byun-Joo;Lee, Yong-Soo;Kim, Hye-Sun;Kim, Yu-Kyung;Kim, Jae-Hwan;Park, Jin-Ki;Chung, Hak-Jae;Chang, Won-Kyong;Kim, Dong-Ku
    • Reproductive and Developmental Biology
    • /
    • v.32 no.1
    • /
    • pp.9-14
    • /
    • 2008
  • Efficient gene transfer into hematopoietic stem cells is a great tool for gene therapy of hematopoietic disease. Retrovirus have been extensively used for gene delivery and gene therapy. However, current in vitro gene transfer has some obstacles suck as induction of differentiation loss of self-renewal capacity, and down-regulation of homing efficiency for in vitro hematopoietic stem cells transplantation. To overcome these problems, we developed efficient in vitro retroviral transfer technique by direct intra-bone marrow injection (IBM). We identified effective retrovirus gene transfer in bone marrow hematopoietic cells in vitro. Two weeks after retrovirus transfer via IBM injection, we observed stable EGFP gene expression in bone marrow, lymph node, spleen, and liver cells. In addition, $6.4{\pm}2.7%$ of hematopoietic stem/progenitor cells were expressed EGFP transgene from flow cytometry analysis. Our results demonstrate that in vitro retrovirus gene transfer via IBM injection can provide a viable alternative to current or moo gene transfer approach.

Colony Forming Unit(CFU) Assay를 이용한 재조합 단백질 Leukotactin-1(Lkn-1)의 Myelosuppression 및 Myeloprotection 연구

  • Lee, Gyu-Hwa;Lee, Gong-Ju;Lee, Eun-Gyeong;Im, In-Hwan;Jeon, Eun-Yeong;Choe, Mu-Rim;Kim, Dong-Il;Park, Du-Hong;Yun, Yeop
    • 한국생물공학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.775-778
    • /
    • 2001
  • Chemokines are small chemotalic cytokines that have a number of biological functions. Some chemokines regulate the proliferation of hematopoietic stem and progenitor cells(HSPC). Leukotactin-l(Lkn-l) is a CC chemokine and is known to reduce colony forming unit(CFU). The N-terminal truncated Leukotactin-l(rtLkn-l), produced by Pichia pastoris, suppressed CFU from 40 to 60%. The rtLkn-l protected CFU from cytotoxic effect of anticancer drug such as Ara-C, doxorubicin, cyclophosphamide and 5-FU by cell cycle arrest.

  • PDF

Effective Reconstitution of Porcine Hematopoietic Cells in Newborn NOD/SCID Mice Xenograft (돼지 골수 조혈 세포의 이종 마우스 동물 모델 생체 증식 및 분화 특성)

  • Lee, Yong-Soo;Lee, Hyun-Joo;Kim, Tea-Sik;Kim, Hye-Sun;Kim, Yoo-Kyong;Kim, Jae-Hwan;Park, Jin-Ki;Chung, Hak-Jae;Chang, Won-Kyong;Kim, Dong-Ku
    • Reproductive and Developmental Biology
    • /
    • v.32 no.1
    • /
    • pp.1-7
    • /
    • 2008
  • The SCID-repopulation cells(SRCs) assay has been widely used to determine the self-renewal capacity of hematopoietic stem cells (HSCs). In this study, we tested the repopulating efficiency of porcine bone marrow derived hematopoietic stem cells using nonobese diabetic/severe combined immunodieficient (NOD/SCID) mice which was inherited immunodeficiency mire with defect of T cells, B cells, and low activity of NK cells. We transplanted porcine bone marrow hematopoietic stem/progenitor cells with intraperitoneal injection into neonate NOD/SCID mice. We confirmed efficient reconstitution activity of inoculated porcine hematopoietis cells in variety of organs of NOD/SCID mice. Interestingly, pig $CD3^+$ T lymphocytes detected with high level in liver($15.6{\pm}3.7%$), spleen($5.6{\pm}3.0%$), thymus($1.5{\pm}1.3%$), and BM($2.3{\pm}0.9%$), respectively. These data imply that microenvironment of neonate NOD/SCID mice is very efficient for proliferation and differentiation of porcine T cells, and can be useful for the study of T cells development and renogeneic organ transplantation.

Different Potential of Hematopoietic Differentiation in Two Distinct Mouse Embryonic Stem Cells (두 개의 다른 마우스 배아줄기세포의 차별적인 조혈세포 분화능)

  • Kim, Jin-Sook;Kang, Ho-Bum;Song, Jee-Yeon;Oh, Goo-Taeg;Nam, Ki-Hoan;Lee, Young-Hee
    • Development and Reproduction
    • /
    • v.9 no.2
    • /
    • pp.105-114
    • /
    • 2005
  • Embryonic stem(ES) cells have tremendous potential as a cell source for cell-based therapies. Realization of that potential will depend on our ability to understand and manipulate the factors that influence cell fate decision and to develop methods for getting enough cell numbers for clinical applications. Hematopoiesis has been widely studied, and hematopoietic differentiation from ES cells is a good model to study lineage commitment. In this study, we investigated stemness and compared the efficiency of hematopoietic differentiation using two different mouse embryonic stem cell lines TC-1 and B6-1. Although the two cell lines showed known stem cell properties with minor differences, the embryoid body formation efficiency in methylcellulose was much higher in TC-1 than B6-1. When measured potentials of hematopoietic differentiation using functional(colony-forming cell) and phenotypic(specific marker expression) assays, we found that TC-1 can differentiate into hematopoietic cells in methylcellulose culture but B6-1 cannot. These results imply that we can improve the efficiency of hematopoietic cell differentiation by selection of proper cell lines and this may be also applied in the differentiation of human embryonic stem cells.

  • PDF

Estrogen Mediates Ischemic Damage and the Migration of Human Umbilical Cord Blood Cells

  • Kim, Jee-Yun;Yu, Seong-Jin;Kim, Do-Rim;Youm, Mi-Young;Lee, Chae-Kwan;Kang, Sung-Goo
    • Proceedings of the Korean Society of Developmental Biology Conference
    • /
    • 2003.10a
    • /
    • pp.71-71
    • /
    • 2003
  • Human umbilical cord blood cells(HUCBC) are rich in mesenchymal progenitor cells, endothelial cell precursors and hematopoietic cells. HUCBC have been used as a source of transplantable stem and progenitor cells. However, little is known about survival and development of HUCBC transplantation in the CNS. Estrogen has a neuroprotective potential against oxidative stress-induced cell death so has an effect on reducing infarct size of ischemic brain. We investigated the potential use of HUCBC as donor cells and tested whether estrogen mediates intravenously infused HUCBC enter and survive in ischemic brain. PKH26 labeled mononuclear fraction of HUCBC were injected into the tail vein of ischemic OVX rat brain with or without $17\beta$-estradiol valerate(EV). Under fluorescence microscopy, labeled cells were observed in the brain section. Significantly more cells were found in the ischemic brain than in the non-ischemic brain. HUCBC transplanted into ischemic brain could migrate and survive. Some of cells have shown neuronal like cells in hippocampus, striatum and cortex tissues. These result suggest that estrogen reduces ischemic damage and increases the migration of human umbilical cord blood cells. This Study was supported by the Korea Science and Engineering Foundation(KOSEF) though the Biohealth Products Research Center(BPRC), Inje University, Korea.

  • PDF

Ex Vivo Expansion of Hematopoietic Stem/Progenitor Cells by Coculture using Insert

  • Kim, Kyung-Suk;Kim, Haekwon;Do, Byung-Rok;Park, Seah;Kwon, Hyuck-Chan;Kim, Hyun-Ok;Im, Jung-Ae
    • Proceedings of the Korean Society of Developmental Biology Conference
    • /
    • 2003.10a
    • /
    • pp.77-77
    • /
    • 2003
  • Coculture of HSC with bone marrow-derived mesenchymal stem cells (BM-MSCs) is one of used methods to increase cell numbers before transplant to the patients. However, because of difficulties to purify HSCs after coculture with BM-MSCs, it needs to develop a method to overcome the problem. In the present study, we have examined whether a culture insert placed over a feeder layer might support the expansion of HSCs within the insert. $CD34^+/ $ cells isolated from the umbilical cord blood by using midiMACS were divided into three groups. A group of 1 $\times$ $10^5$ cells were grown on a culture insert without feeder layer (Direct). The same number of HSCs was directly cocultured with BM-MSCs (Contact). The third group was placed onto an insert below which BM-MSCs were grown (Insert). To distinguish feeder cells from HSCs, BM-MSCs was pre-labeled fluorescently with PKH26 and 1 $\times$ $10^5$ cells were seeded in the culture dishes. After culture for 13 days, the expansion factor (x) of HSCs that were grown without feeder layer (Direct) was $26.6 \pm 8.4.$ In contrast, the number of HSCs directly cocultured with feeder layer was 59.6 $\pm$ 0.5 and that of HSCs cultured onto an insert was $46.9 \pm 8.4.$ The percentage of BM-MSCs cells remained being fluorescent was $97.9 \pm 0.3%$ after culture. Immune-phenotypically large proportion of cultured cells were founded to be differentiated into myeloid/monocyte progenitor cells. The ability of BM-MSCs, fetal lung, cartilage and brain tissue cells to support ex vivo expansion of HSCs was also examined using the insert. After 11 days of coculture with each of these cells, the expansion factor of HSCs was 15.0, 39.0, 32.0 and 24.0, respectively. Based upon these observations, it is concluded that the coculture method using insert is very effective to support ex vivo expansion of HSCs and to eliminate the contamination of other cells used to coculture wth HSCs.

  • PDF

The maintenance mechanism of hematopoietic stem cell dormancy: role for a subset of macrophages

  • Cheong-Whan Chae;Gun Choi;You Ji Kim;Mingug Cho;Yoo-Wook Kwon;Hyo-Soo Kim
    • BMB Reports
    • /
    • v.56 no.9
    • /
    • pp.482-487
    • /
    • 2023
  • Hematopoiesis is regulated by crosstalk between long-term repopulating hematopoietic stem cells (LT-HSCs) and supporting niche cells in the bone marrow (BM). Here, we describe the role of KAI1, which is mainly expressed on LT-HSCs and rarely on other hematopoietic stem-progenitor cells (HSPCs), in niche-mediated LT-HSC maintenance. KAI1 activates TGF-β1/Smad3 signal in LT-HSCs, leading to the induction of CDK inhibitors and inhibition of the cell cycle. The KAI1-binding partner DARC is expressed on macrophages and stabilizes KAI1 on LT-HSCs, promoting their quiescence. Conversely, when DARC+ BM macrophages were absent, the level of surface KAI1 on LT-HSCs decreases, leading to cell-cycle entry, proliferation, and differentiation. Thus, KAI1 acts as a functional surface marker of LT-HSCs that regulates dormancy through interaction with DARC-expressing macrophages in the BM stem cell niche. Recently, we showed very special and rare macrophages expressing α-SMA+ COX2+ & DARC+ induce not only dormancy of LT-HSC through interaction of KAI1-DARC but also protect HSCs by down-regulating ROS through COX2 signaling. In the near future, the strategy to combine KAI1-positive LT-HSCs and α-SMA/Cox2/DARC triple-positive macrophages will improve the efficacy of stem cell transplantation after the ablative chemo-therapy for hematological disorders including leukemia.

Molecular Involvement and Prognostic Importance of Fms-like Tyrosine Kinase 3 in Acute Myeloid Leukemia

  • Shahab, Sadaf;Shamsi, Tahir S.;Ahmed, Nuzhat
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.9
    • /
    • pp.4215-4220
    • /
    • 2012
  • AML (Acute myeloid leukemia) is a form of blood cancer where growth of myeloid cells occurs in the bone marrow. The prognosis is poor in general for many reasons. One is the presence of leukaemia-specific recognition markers such as FLT3 (fms-like tyrosine kinase 3). Another name of FLT3 is stem cell tyrosine kinase-1 (STK1), which is known to take part in proliferation, differentiation and apoptosis of hematopoietic cells, usually being present on haemopoietic progenitor cells in the bone marrow. FLT3 act as an independent prognostic factor for AML. Although a vast literature is available about the association of FLT3 with AML there still is a need of a brief up to date overview which draw a clear picture about this association and their effect on overall survival.

Increased HoxB4 Inhibits Apoptotic Cell Death in Pro-B Cells

  • Park, Sung-Won;Won, Kyung-Jong;Lee, Yong-Soo;Kim, Hye-Sun;Kim, Yu-Kyung;Lee, Hyeon-Woo;Kim, Bo-Kyung;Lee, Byeong-Han;Kim, Jin-Hoi;Kim, Dong-Ku
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.16 no.4
    • /
    • pp.265-271
    • /
    • 2012
  • HoxB4, a homeodomain-containing transcription factor, is involved in the expansion of hematopoietic stem cells and progenitor cells in vivo and in vitro, and plays a key role in regulating the balance between hematopoietic stem cell renewal and cell differentiation. However, the biological activity of HoxB4 in other cells has not been reported. In this study, we investigated the effect of overexpressed HoxB4 on cell survival under various conditions that induce death, using the Ba/F3 cell line. Analysis of phenotypical characteristics showed that HoxB4 overexpression in Ba/F3 cells reduced cell size, death, and proliferation rate. Moreover, the progression from early to late apoptotic stages was inhibited in Ba/F3 cells subjected to HoxB4 overexpression under removal of interleukin-3-mediated signal, leading to the induction of cell cycle arrest at the G2/M phase and attenuated cell death by Fas protein stimulation in vitro. Furthermore, apoptotic cell death induced by doxorubicin-treated G2/M phase cell-cycle arrest also decreased with HoxB4 overexpression in Ba/F3 cells. From these data, we suggest that HoxB4 may play an important role in the regulation of pro-B cell survival under various apoptotic death environments.