• Title/Summary/Keyword: helicity

Search Result 71, Processing Time 0.023 seconds

Solution Structure of LXXLL-related Cofactor Peptide of Orphan Nuclear Receptor FTZ-F1

  • Yun, Ji-Hye;Lee, Chul-Jin;Jung, Jin-Won;Lee, Weon-Tae
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.2
    • /
    • pp.583-588
    • /
    • 2012
  • Functional interaction between Drosophila orphan receptor FTZ-F1 (NR5A3) and a segmentation gene product fushi tarazu (FTZ) is crucial for regulating genes related to define the identities of alternate segmental regions in the Drosophila embryo. FTZ binding to the ligand-binding domain (LBD) of FTZ-F1 is of essence in activating its transcription process. We determined solution structures of the cofactor peptide ($FTZ^{PEP}$) derived from FTZ by NMR spectroscopy. The cofactor peptide showed a nascent helical conformation in aqueous solution, however, the helicity was increased in the presence of TFE. Furthermore, $FTZ^{PEP}$ formed ${\alpha}$-helical conformation upon FTZ-F1 binding, which provides a receptor bound structure of $FTZ^{PEP}$. The solution structure of $FTZ^{PEP}$ in the presence of FTZ-F1 displays a long stretch of the ${\alpha}$-helix with a bend in the middle of helix.

Influence of the Hydrophobic Amino Acids in the N- and C-Terminal Regions of Pleurocidin on Antifungal Activity

  • Lee, June-Young;Lee, Dong-Gun
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.8
    • /
    • pp.1192-1195
    • /
    • 2010
  • To investigate the influence of the N- or C-terminal regions of pleurocidin (Ple) peptide on antifungal activity, four analogs partially truncated in the N- or C-terminal regions were designed and synthesized. Circular dichroism (CD) spectroscopy demonstrated that all the analogs maintained an alpha-helical structure. The antifungal susceptibility testing also showed that the analogs exhibited antifungal activities against human fungal pathogens, without hemolytic effects against human erythrocytes. The result further indicated that the analogs had discrepant antifungal activities [Ple>Ple (1-22)>Ple (4-25)>Ple (1- 19)>Ple (7-25)] and that N-terminal deletion affected the activities much more than C-terminal deletion. Hydrophobicity [Ple>Ple (1-22)>Ple (4-25)>Ple (1-19)> Ple (7-25)] was thought to have been one of the consistent factors that influenced these activity patterns, rather than the other primary factors like the helicity [Ple>Ple (4-25) >Ple (1-22)>Ple (1-19)>Ple (7-25)] or the net charge [Ple=Ple (4-25)=Ple (7-25)>Ple (1-22)=Ple (1-19)] of the peptides. In conclusion, the hydrophobic amino acids in the N-terminal region of Ple is more crucial for antifungal activity than those in the C-terminal region.

Structure-antibiotic Acitivity Relationships of Brevinin-1 and Thanatin Containing Rana Box (Rana box를 포함한 Brevinin-1 및 Thanatin의 구조-상생활성 상관관계)

  • 신송엽;강주현;이동건;장소윤;서무열;함경수
    • Microbiology and Biotechnology Letters
    • /
    • v.27 no.6
    • /
    • pp.440-445
    • /
    • 1999
  • In order to investigate structure-antibiotic activity relationships of brevinin-1 and thanatin containing Rana box composed of basic loop formed by disulfide bridge in their arboxy terminus, thanatin, brevinin 1 and their analogues (T-B1, T-B2 and B-T) in which their Rana box sequence exchanged was designed and synthesized by the solid phase method using Fmoc-chemistry. The basic sequence of Rana box of thanatin had more significant effect on both antibacterial and antifungal activity than that of brevinin 1. The tail sequence (QRM) of thanatin was found to be important in its antibacterial and antifungal activity. Rana box sequence of brevinin-1 did not have a significant effect on its antitumor and phospholipid vesicle-aggregating activities. Brevinin-1 showed stronger $\alpha$-helical structure in the membrane-mimicking environment such as SDS micelle than thanatin. A remarkable increase in a-helicity of bervinin-1 plays more important role in antibiotic activity than that of thanatin. Furthermore, antibacterial activity of thanatin against E. coli resulted from the disruptive effect against the outer cell membrane of E. coli.

  • PDF

Induction of Single Helical Screw Sense in Poly (n-Hexyl Isocyanate) by End-capping with a Chiral Moiety

  • Nath G. Yogendra;Samal Shashadhar;Park, Sang-Yoon;Murthy C.N.;Lee, Jae-Suk
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.334-334
    • /
    • 2006
  • Helical polymers like polyisocyanates with single screw sense are essential to exhibit sophisticated functions like molecular recognition, self-replication, chirality memory and catalytic activity. One approach that has not been explored is the effect on handedness of the polyisocyanates through end-capping with a chiral residue. Induction of chirality in poly(n-hexyl isocyanate) was studied by end-capping with chiral (R and S) 2-bromo-3-methylbutyryl chloride(R-BMBC and S-BMBC). We have shown that a control over living anionic polymerization of HIC by using a suitable initiator affords an opportunity to introduce chiral end-groups with 100% yield and in high purity. This has resulted in helicity induction through extended lengths several orders of magnitude.

  • PDF

Detrended fluctuation analysis of magnetic parameters of solar active regions

  • Lee, Eo-Jin;Moon, Yong-Jae
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.1
    • /
    • pp.81.2-81.2
    • /
    • 2016
  • Many signals in the nature have power-law behaviors, namely they are "scale-free". The method of detrended fluctuation analysis (DFA), as one of the popular methods (e.g., Rescaled range analysis and Spectral analysis) for determining scale-free nature of time series, has a very important advantage that the DFA can be applied to both stationary and non-stationary signals. The analysis of time series using the DFA has been broadly used in physiology, finance, hydrology, meteorology, geology, and so on. We performed the DFA of 16 Spaceweather HMI Active Region Patch (SHARP) parameters for 38 HMI Active Region Patches (HARPs) obtained by Solar Dynamics Observatory (SDO) from May 2010 to June 2014. The main results from this study are as follows. (1) The most of the time series data are non-stationary. (2) The DFA scaling exponents of "mean vertical current density" for 38 HARPs have a negative correlation coefficient (-0.41) with flare index. (3) The DFA scaling exponents of parameters such as "Sum of the absolute value of net currents per polarity", "Absolute value of the net current helicity", and "Mean photospheric excess magnetic energy density" for the most active HARPs having more than 10 major flares, have positive correlation coefficients (0.64, 0.59, and 0.53, respectively) with the ratio of "the number of CMEs associated with major flares" to "the number of major flares". Physical interpretations on our results will be discussed.

  • PDF

TEMPORAL CHANGE OF MAGNETIC SHEAR FREE FROM THE 180° AMBIGUITY

  • MOON Y.-J.;WANG HAIMIN;SPIROCK THOMAS J.;PARK Y. D.
    • Journal of The Korean Astronomical Society
    • /
    • v.35 no.3
    • /
    • pp.143-149
    • /
    • 2002
  • In this paper we present a methodology to derive the temporal change of the magnetic shear angle from a series of vector magnetograms, with a high time cadence. This method looks for the minimum change of the shear angle between a pair of magnetograms, free from the $180^{\circ}$ ambiguity, and then accumulates this change over many successive pairs to derive the temporal change of magnetic shear. This methodology will work well if only the successive magnetograms occurred in an active region are well aligned and its helicity sign is reasonably determined. We have applied this methodology to a set of vector magnetograms of NOAA Active Region 9661 on October 19, 2001 by the new digital magnetograph at the Big Bear Solar Observatory (BBSO). For this work we considered well aligned magnetograms whose cross-correlation values are larger than 0.95. As a result, we have confirmed the recent report of Wang et al. that there was the abrupt shear change associated with the X1.6 flare. It is also demonstrated that the shear change map can be an useful tool to highlight the local areas that experienced the abrupt shear change. Finally, we suggest that this observation should be a direct support of the emergence of sheared magnetic fields.

Prokaryotic Selectivity, Anti-endotoxic Activity and Protease Stability of Diastereomeric and Enantiomeric Analogs of Human Antimicrobial Peptide LL-37

  • Nan, Yong-Hai;Lee, Bong-Ju;Shin, Song-Yub
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.9
    • /
    • pp.2883-2889
    • /
    • 2012
  • LL-37 is the only antimicrobial peptide (AMP) of the human cathelicidin family. In addition to potent antimicrobial activity, LL-37 is known to have the potential to inhibit lipolysaccharide (LPS)-induced endotoxic effects. To provide the stability to proteolytic digestion and increase prokaryotic selectivity and/or anti-endotoxic activity of two Lys/Trp-substituted 19-meric antimicrobial peptides (a4-W1 and a4-W2) designed from IG-19 (residues 13-31 of LL-37), we synthesized the diastereomeric peptides (a4-W1-D and a4-W2-D) with D-amino acid substitution at positions 3, 7, 10, 13 and 17 of a4-W1 and a4-W2, respectively and the enantiomeric peptides (a4-W1-E and a4-W2-E) composed D-amino acids. The diastereomeric peptides exhibited the best prokaryotic selectivity and effective protease stability, but no or less anti-endotoxic activity. In contrast, the enantiomeric peptides had not only prokaryotic selectivity and anti-endotoxic activity but also protease stability. Our results suggest that the hydrophobicity and ${\alpha}$-helicity of the peptide is important for anti-endotoxic activity. In particular, the enantiomeric peptides showed potent anti-endotoxic and LPS-neutralizing activities comparable to that of LL-37. Taken together, both a4-W1-E and a4-W2-E holds promise as a template for the development of peptide antibiotics for the treatment of endotoxic shock and sepsis.

Structure-Antifungal Activity Relationships of Cecropin A-Magainin 2 and Cecropin A-Melittin Hybrid Peptides on Pathogenic Fungal Cells

  • Lee, Dong-Gun;Jin, Zhe-Zhu;Shin, Song-Yub;Kang, Joo-Hyun;Hahm, Kyung-Soo;Kim, Kil-Lyong
    • Journal of Microbiology and Biotechnology
    • /
    • v.8 no.6
    • /
    • pp.595-600
    • /
    • 1998
  • In order to investigate a relationship of the structure-antifungal and hemolytic activities between cecropin A(1-8)-magainin 2(1-12) and cecropin A(1-8)-melittin(1-12) hybrid peptides, several analogues with amino acid substitution at positions 10 (Ile) and 16 (Ser) were designed and synthesized. The increase of the hydrophobicity by substituting with Leu, Phe, and Trp at position 16 in cecropin A(1-8)-magainin 2(1-12) did not have a significant effect on antifungal activity but caused a remarkable increase in hemolytic activity. These results indicate that the hydrophobic property at position 16 of cecropin A(1-8)-magainin 2(1-12) is more correlated to hemolytic activity than to antifungal activity. Replacement with Pro at position 10 of cecropin A(1-8)- magainin 2(1-12) and cecropin A(1-8)-melittin (1-12) caused a remarkable decrease in a-helical contents in the 50% TFE solution and induced a reduction in lytic activity against Aspergillus flavus, and Aspergillus fumigatus. These results demonstrate that flexibility at the central hinge region is essential for lytic activity against fungal cells and $\alpha$-helicity of the peptides.

  • PDF

A Theory for the Helix/Coil Transition of Oligopeptide Chain Dimer (올리고펩티드 사슬이합체의 헬릭스-코일 전이 이론)

  • Kim, Younggu;Pak, Hyungsuk
    • Journal of the Korean Chemical Society
    • /
    • v.39 no.10
    • /
    • pp.776-782
    • /
    • 1995
  • A theory of the helix/coil transition for $\alpha$ helical dimer such as $\alpha$ tropomycin and paramycin is developed. The treatment differs from those formulated previously for oligopeptide dimer which is explained by the matrix method using Zimm-Bragg parameter: In the present treatement, it is explained by the zipper model which can account for the dangling H-bond. We calculate the fractional helicity in $\alpha$ helical dimer as a function of helix initiation $constant(\sigma)$, helix stability constant(${\xi}$) and hydrophobic interaction parameter(w). For $\alpha$ tropomycin, the helix stability profile is also calculated. The transitions of this oligomer due to the change of temperature and the concentration of oligopeptide involve simultaneous dissociation of the dimer. The transitions of dimers which have cross-linked S-S bonds or have long chains don't occur, because they keep always helical structures. The transitons due to the concentration of the oligopeptides are steeper than those due to the chain length or temperature.

  • PDF

Unfolding of Ervatamin C in the Presence of Organic Solvents: Sequential Transitions of the Protein in the O-state

  • Sundd, Monica;Kundu, Suman;Dubey, Vikash Kumar;Jagannadham, Medicherla V.
    • BMB Reports
    • /
    • v.37 no.5
    • /
    • pp.586-596
    • /
    • 2004
  • The folding of ervatamin C was investigated in the presence of various fluorinated and non-fluorinated organic solvents. The differences in the unfolding of the protein in the presence of various organic solvents and the stabilities of O-states were interpreted. At pH 2.0, non-fluorinated alkyl alcohols induced a switch from the native $\alpha$-helix to a $\beta$-sheet, contrary to the $\beta$-sheet to $\alpha$-helix conversion observed for many proteins. The magnitude of ellipticity at 215 nm, used as a measure of $\beta$-content, was found to be dependent on the concentration of the alcohol. Under similar conditions of pH, fluorinated alcohol enhanced the intrinsic a-helicity of the protein molecule, whereas the addition of acetonitrile reduced the helical content. Ervatamin C exhibited high stability towards GuHCl induced unfolding in different O-states. Whereas the thermal unfolding of O-states was non-cooperative, contrary to the cooperativity seen in the absence of the organic solvents under similar conditions. Moreover, the differential scanning calorimetry endotherms of the protein acquired at pH 2.0 were deconvoluted into two distinct peaks, suggesting two cooperative transitions. With increase in pH, the shape of the thermogram changed markedly to exhibit a major and a minor transition. The appearance of two distinct peaks in the DSC together with the non-cooperative thermal transition of the protein in O-states indicates that the molecular structure of ervatamin C consists of two domains with different stabilities.