• Title/Summary/Keyword: helical sense

Search Result 6, Processing Time 0.022 seconds

Induction of Single Helical Screw Sense in Poly (n-Hexyl Isocyanate) by End-capping with a Chiral Moiety

  • Nath G. Yogendra;Samal Shashadhar;Park, Sang-Yoon;Murthy C.N.;Lee, Jae-Suk
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.334-334
    • /
    • 2006
  • Helical polymers like polyisocyanates with single screw sense are essential to exhibit sophisticated functions like molecular recognition, self-replication, chirality memory and catalytic activity. One approach that has not been explored is the effect on handedness of the polyisocyanates through end-capping with a chiral residue. Induction of chirality in poly(n-hexyl isocyanate) was studied by end-capping with chiral (R and S) 2-bromo-3-methylbutyryl chloride(R-BMBC and S-BMBC). We have shown that a control over living anionic polymerization of HIC by using a suitable initiator affords an opportunity to introduce chiral end-groups with 100% yield and in high purity. This has resulted in helicity induction through extended lengths several orders of magnitude.

  • PDF

Alternative approach for the derivation of an eigenvalue problem for a Bernoulli-Euler beam carrying a single in-span elastic rod with a tip-mounted mass

  • Gurgoze, Metin;Zeren, Serkan
    • Structural Engineering and Mechanics
    • /
    • v.53 no.6
    • /
    • pp.1105-1126
    • /
    • 2015
  • Many vibrating mechanical systems from the real life are modeled as combined dynamical systems consisting of beams to which spring-mass secondary systems are attached. In most of the publications on this topic, masses of the helical springs are neglected. In a paper (Cha et al. 2008) published recently, the eigencharacteristics of an arbitrary supported Bernoulli-Euler beam with multiple in-span helical spring-mass systems were determined via the solution of the established eigenvalue problem, where the springs were modeled as axially vibrating rods. In the present article, the authors used the assumed modes method in the usual sense and obtained the equations of motion from Lagrange Equations and arrived at a generalized eigenvalue problem after applying a Galerkin procedure. The aim of the present paper is simply to show that one can arrive at the corresponding generalized eigenvalue problem by following a quite different way, namely, by using the so-called "characteristic force" method. Further, parametric investigations are carried out for two representative types of supporting conditions of the bending beam.

Thermotropic Liquid Crystalline Properties of Glucose Penta(cholesteryloxycarbonyl)alkanoates (글루코오스 펜타(콜레스테릴옥시카보닐)알카노에이트들의 열방성 액정 특성)

  • Jeong, Seung-Yong;Ma, Yung Dae
    • Applied Chemistry for Engineering
    • /
    • v.18 no.5
    • /
    • pp.475-482
    • /
    • 2007
  • The thermal and optical properties of glucose penta(cholesteryloxycarbonyl)alkanoates (CAGLn, n = 2~8, 10, the number of methylene units in the spacer) were investigated. All the CAGLn formed monotropic cholesteric phases with left-handed helical structures. CAGLn with n = 2 or 10, in contrast with CAGLn with $3{\leq}n{\leq}8$, did not display reflection colors over the full cholesteric range, suggesting that the helical twisting power of the cholesteryl group highly depends on the length of the spacer joining the cholesteryl group to the glucose chain. The isotropic-cholesteric transition point ($T_{ic}$) decreased with increasing n and showed no odd-even effect. The plot of transition entropy at $T_{ic}$ against n had a sharp negative inflection at n = 7. The optical pitches (${{\lambda}_m}^{\prime}$ s) of CAGLn with $3{\leq}n{\leq}8$ decreased with increasing temperature. However, the temperature dependence of the ${\lambda}_m$ of the derivatives exhibited pronounced dependence on n. The transitional properties and the temperature dependence of the ${\lambda}_m$ observed for CAGLn were discussed in terms of the differences in arrangement of the cholesteryl groups and the conformation of the molecules.

An Integrated CAD System for Design of Extruder Screw (압출 스크류 설계를 위한 CAD 시스템 개발)

  • Yoon, Jun-Young;Hwang, Yong-Keun;Park, Joo-Sam;Ko, Tae-Jo;Park, Jung-Whan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.8
    • /
    • pp.100-107
    • /
    • 2002
  • The extruder screw is a part for extruding material in a injection molding machine. The screw's geometrical shape can mathematically be described by a sweep surface which is constructed by sweeping a section curve composed of a few circular arcs, along a helical guide curve. In the paper we developed a dedicated CAD system which basically is parametric in a sense that the system initially takes several design parameters to construct the geometric elements including the final sweep surface of the screw as well as section & guiding curves, along with feasibility check of the input parameter values, without further user interaction. The system has been developed as a built-in module onto a commercial CAD system, which can further incorporate additional NC-out functions with ease.

Thermotropic Liquid Crystalline Behavior of Hydroxypropyl Celluloses Bearing Cholesteryl and Nitroazobenzene Groups (콜레스테릴과 니트로아조벤젠 그룹을 지닌 히드록시프로필 셀룰로오스들의 열방성 액정 거동)

  • Jeong, Seung-Yong;Ma, Yung-Dae
    • Polymer(Korea)
    • /
    • v.32 no.5
    • /
    • pp.446-457
    • /
    • 2008
  • Three kinds of hydroxypropyl cellulose (HPC) derivatives: 6- (cholesteryloxycarbonyl) pentoxypropyl celluloses(CHPCs) with degree of esterification(DE) ranging from 0.6 to 3, 6-[4-{4'-(nitrophenylazo)phenoxycarbonyl}] pentoxypropyl celluloses (NHPCs) with DE ranging from 0.4 to 3, and fully 6-(cholesteryloxycarbonyl) pentanoated NHPCs (CNHPCs) were synthesized, and their thermotropic liquid crystalline properties were investigated. All the CHPCs and NHPCs with $DE{\leq}1.7$ formed enantiotropic cholesteric phases, whereas CNHPCs with 6-(cholesteryloxycarbonyl) pentanoyl DE(DEC) more than 1.6 exhibited monotropic cholesteric phases. On the other hand, NHPCs with $DE{\geq}2.4$ and CNHPCs with $DEC{\leq}1.3$ showed monotropic nematic phases. NHPCs with $DE{\leq}l$, as well as HPC, formed right-handed helices whose optical pitches (${{\lambda}_m}'s$) increase with temperature, while all the CHPCs formed left-handed helices whose ${{\lambda}_m}'s$ decrease with temperature. In contrast with these derivatives, NHPCs with $1.4{\leq}DE{\leq}1.7$ and CNHPCs with $DEC{\geq}1.6$ did not display reflection colors over the full cholesteric range, suggesting that the helical twisting power of the cellulose chain and the cholesteryl group highly depends on the chemical structure and DE of mesogenic group.

Infulence of Spacer and Degree of Esterification on Thermotropic Liquid Crystalline Properties of Amyloses Bearing Cholesteryl Group (스페이서와 에스터화도가 콜레스테릴 그룹을 지닌 아밀로오스들의 열방성 액정 특성에 미치는 영향)

  • Jeong, Seung-Yong;Ma, Yung-Dae
    • Polymer(Korea)
    • /
    • v.31 no.4
    • /
    • pp.356-367
    • /
    • 2007
  • Three kinds of amylose derivatives such as: cholesteryloxycarbonated amyloses(CAMs) with degree of esterification(DE) ranging from 1.8 to 3, (6-cholesteryloxycarbonyl)pentanoated amyloses(PAMs) with DE ranging from 0.3 to 3, and fully cholesteryloxycarbonated PAMs(CPAMs) were synthesized, and their thermotropic liquid crystalline properties were investigated. CAMs with $DE{\geq}2.6$, PAM with DE=1.6 and all the CPAMs formed enantiotropic cholesteric phases, whereas PAM with $DE{\geq}2.2$ exhibited monotropic cholesteric phases. PAM with $DE{\geq}2.2$ and CPAMs with (6-cholesteryloxycarbonyl)pentanoyl DE (DS) more than 1.0 formed cholesteric phases with left-handed helical structures whose optical pitches (${\lambda}_{m'}s$) decrease with increasing temperature. However, the ${\lambda}_{m'}s$ of these samples decreased with increasing DS at the same temperature. On the other hand, CAMs, PAM with DE=1.6, and CPAM with DS=0.3 did not display reflection colors over the full cholesteric range, suggesting that the helicoidal twisting power of the cholesteryl group highly depends on the length of the spacer joining the cholesteryl group to the main chain and DS. The thermal stability and degree of order in the mesophase observed for the amylose derivatives highly depended on DE or DS. The results were discussed in terms of the difference ul the hydrogen bond, the internal plasticization, and the decoupling of the motion of side group with the main chain.