• Title/Summary/Keyword: height to width ratio

Search Result 494, Processing Time 0.031 seconds

Potential Change in the Cross Section of the Rectangular Microchannel with Different Hydraulic Diameters (수력학적 지름 변화에 따른 직사각형 마이크로채널 단면에서의 파텐셜 변화)

  • Lee, Hyo Song;Kim, Ki Ho;Yu, Jae Keun;Noh, Soon Young;Choi, Jae Ho;Yoon, Soo Kyung;Rhee, Young Woo
    • Clean Technology
    • /
    • v.12 no.4
    • /
    • pp.211-216
    • /
    • 2006
  • In this study, we investigated the potential changes in the cross sectional area of the rectangular microchannel with various zeta potentials and hydraulic diameters. We changed height/width ratio as 1, 1/2, and 1/3 and investigated its effect on the potential change. For this research, FEMLAB(Comsol, verson 3.0) was used to investigate the theoretical potential distribution. The potential changes in the cross section shows that right and left surfaces affect to some ranges. For the same area and shape, the potential value is directly proportional to the zeta potential change. With the decrease in the H/W ratio, the electrical double layer is condensed to the side surfaces.

  • PDF

Effect of Duct Aspect Ratios on Pressure Drop in a Rotating Two-Pass Duct (덕트 종횡비가 회전덕트 내 압력강하에 미치는 영향)

  • Kim Kyung-Min;Lee Dong-Hyun;Cho Hyung-Hee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.6 s.249
    • /
    • pp.505-513
    • /
    • 2006
  • The pressure drop characteristics in a rotating two-pass duct with rib turbulators are investigated in the present study. Three ducts of different aspect ratios (W/H=0.5, 1.0 and 2.0) are employed with a fixed hydraulic diameter ($D_h$) of 26.7 mm. $90^{\circ}$-rib turbulators with $1.5mm{\times}1.5mm$ cross-section are attached on the leading and trailing surfaces. The pitch-to-rib height ratio (p/e) is 1.0. The distance between the tip of the divider and the outer wall of the duct is 1.0 W. The thickness of divider wall is 6.0 mm o. 0.225 $D_h$. The Reynolds number (Re) based on the hydraulic diameter is kept constant at 10,000 and the .elation number (Ro) is varied from 0.0 to 0.2. As duct aspect ratio increases, high friction factor ratios show in overall regions. The reason is that the rib height-to-duct height ratio (e/H) increases, but the divider wall thickness-to-duct width ($t_d/W$) decreases. The rotation of duct produces pressure drop discrepancy between the leading and trailing surfaces. However, the pressure drop discrepancy of the high duct aspect ratio (AR=2.0) is smaller than that of the low duct aspect ratio (AR=0.5) due to the decrement of duct hight (H).

A robust multi-objective localized outrigger layout assessment model under variable connecting control node and space deposition

  • Lee, Dongkyu;Lee, Jaehong;Kang, Joowon
    • Steel and Composite Structures
    • /
    • v.33 no.6
    • /
    • pp.767-776
    • /
    • 2019
  • In this article, a simple and robust multi-objective assessment method to control design angles and node positions connected among steel outrigger truss members is proposed to approve both structural safety and economical cost. For given outrigger member layouts, the present method utilizes general-purpose prototypes of outrigger members, having resistance to withstand lateral load effects directly applied to tall buildings, which conform to variable connecting node and design space deposition. Outrigger layouts are set into several initial design conditions of height to width of an arbitrary given design space, i.e., variable design space. And then they are assessed in terms of a proposed multi-objective function optimizing both minimal total displacement and material quantity subjected to design impact factor indicating the importance of objectives. To evaluate the proposed multi-objective function, an analysis model uses a modified Maxwell-Mohr method, and an optimization model is defined by a ground structure assuming arbitrary discrete straight members. It provides a new robust assessment model from a local design point of view, as it may produce specific optimal prototypes of outrigger layouts corresponding to arbitrary height and width ratio of design space. Numerical examples verify the validity and robustness of the present assessment method for controlling prototypes of outrigger truss members considering a multi-objective optimization achieving structural safety and material cost.

Kansei Comparison of Form-ratio by Factor Analysis

  • Nishino, Tatsuo;Nagamachi, Mitsuo
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 2000.04a
    • /
    • pp.248-252
    • /
    • 2000
  • Form-ratio means the ratio of height/Width/Depth in 3-dimensions. The golden ratio or golden section is included as one of the form-ratio. We conducted two kinds of kansei experiments of cubic model and refrigerator varied from 1:1:1 to 1:1:3.66 on the scale of x:y:z. The subjects evaluate the form-ratios of 3-dimensional cubes and virtual products with SD-scale Kansei words(feelings and images). We applied the factor analysis to identify semantic space in cube model and virtual products. Finally, we compared with kansei structure of cube model and virtual product.

  • PDF

The study of combustion characteristics and emissions with the variation of design factor on slit gas burner (슬릿버너에서 형상변화가 연소특성 및 배기배출물에 미치는 영향)

  • Kim, Tae-Woo;Cho, Seung-Wan;Chang, Young-June;Jeon, Chung-Hwan
    • 한국연소학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.314-319
    • /
    • 2005
  • In this study, the combustion characteristics were investigated with the variation of design factors on multiple slit gas burner. The design factors consist of slit height, width, spacing, and inner length. The combustion characteristics were made analysis of the CO emission and NOx emission by using CO analyzer and NOx analyzer. The lower perimeter to area and the narrow spacing extends the lift-flame limit. The CO emission increases with the increasing perimeter to area ratio at the same condition. The NOx emission is found to be less significant with the port perimeter to area ratio. The flame interference might highly depend on the spacing and port perimeter to area ratio, and it also affects the burner performance.

  • PDF

An Experimental Study on Void Closure Behavior with respect to Reductions in Height (압하율에 따른 기공압착 거동에 관한 실험적 연구)

  • Choi, I.J.;Choi, H.J.;Park, H.J.;Choi, S.;Jung, T.W.;Park, D.K.;Choi, S.K.;Lim, S.J.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.114-117
    • /
    • 2009
  • In this work, closing behavior of the voids generated in a casting process was investigated for various parameters such as reductions in height void size and billet rotation during hot open die forging process. The reduction in height and path schedule including the number of paths and billet rotation were chosen as key process variables to express the change of geometrical void shape and void closing behavior. On the other hand, values of die overlapping and die width ratio were set to be constant. Extend of void closure was observed and evaluated using tensile test and microscope. Based on the experimental result, it is ensured that void closure do not occur at 15% and 30% reduction in height as well as one or two rotations of a billet. The useful datum obtained from this study could be utilized to establish an optimum path schedule in the open die forging process.

  • PDF

Effects of Stud Spacing, Sheathing Material and Aspect-ratio on Racking Resistance of Shear Walls

  • Jang, Sang Sik
    • Journal of the Korean Wood Science and Technology
    • /
    • v.30 no.3
    • /
    • pp.97-103
    • /
    • 2002
  • This study was carried out to obtain basic information on racking resistance of shear walls and the factors affecting racking resistance of shear walls. Shear walls constructed by larch lumber nominal 50 mm × 100 mm framing and various sheathing materials were tested by applying monotonic and cyclic load functions. Shear walls with various stud spacing such as 305 mm, 406 mm, and 610 mm were tested under both of monotonic and cyclic loads and shear walls with various aspect (height-width) ratios were tested under cyclic load functions. The effect of hold-down connectors in shear walls was also tested under cyclic load functions. Racking resistance of shear walls has very close linear relation with stud spacing and width of shear walls. The ultimate racking strength of shear walls was reached at around or before the displacement of 20 mm. It was proposed in this study that the minimum racking strength and minimum width for shear wall be 500 kgf and 900 mm, respectively. Load-displacement curves obtained by racking tests under monotonic load functions can be represented by three straight line segments. Under cyclic load functions, envelope curves can be divided into three sections that can be represented by straight lines and the third section showed almost constant or decreasing slope.

Model Tests Study on Flow-induced Vibrationof Tainter Gate in Estuary Sulices(Ⅱ)- Flow from the Gate Inside to the Gate Outside - (배수갑문 테인터 게이트(Tainter Gate)의 진동현상에 관한 모형실험(Ⅱ)- 문비 안에서 밖으로의 흐름 -)

  • Lee , Seong-Haeng;Woo , Sang-Ik
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.46 no.2
    • /
    • pp.41-47
    • /
    • 2004
  • A model test is carried out to investigate flow-induced vibration of a Tainter gate in estuary sulices. The gate model scaled with the ratio of 1:25 is made of acryl panel dimensioned 0.66 m in width, 0.5 m in height in the concrete test flume. Firstly, natural frequencies of the model gate are measured and the results are compared with the numerical results in order to verify the model. In the flow from the gate inside to the gate outside, the amplitudes of the vibration are measured under the different gate opening and downstream water level conditions. Also revised gate models with 20 mm bottom width are tested under the different gate openings and water levels. The results are analyzed to study the characteristics of the Tainter gate vibration in the sea ward flow. These test results are assessed in comparison with the results in the lake ward flow, as a result, presents the dynamic characteristics of the Tainter gate and a basic data for the guide manuals of gate management.

Post-pillars design for safe exploitation at Trepça hard rock mine (Kosovo) based on numerical modeling

  • Ibishi, Gzim;Genis, Melih;Yavuz, Mahmut
    • Geomechanics and Engineering
    • /
    • v.28 no.5
    • /
    • pp.463-475
    • /
    • 2022
  • In the mine exploitation stage; one of the critical issues is the stability assessment of post-pillars. The instability of post-pillars leads to serious safety hazards in mining operations. The focus of this study is to assess the stability of post-pillars in the 130# stope in the central ore body at Trepça hard rock mine by employing both conventional (i.e., critical span curve) and numerical methods (i.e., FLAC3D). Moreover, a new numerical based index (i.e., Pillar Yield Ratio-PYR) was proposed. The aim of PYR index is to determine a border line between stable, potentially unstable, and failure state of post-pillars at a specific mine site. The critical value of pillar width to height ratio is 2.5 for deep production stopes (e.g., > 800 m). Results showed that pillar size, mining height and mining depth significantly have affected the post-pillar stability. The reliability of numerical based index (i.e., PYR) is verified based on empirical underground pillar stability graph developed by Lunder, 1994. The proposed pillar yield ratio index and pillar stability graph can be used as a design tool in new mining areas at Trepça hard rock mine and for other situations with similar geotechnical conditions.

Mechanical Stability Analysis to Determine the Optimum Aspect Ratio of Rock Caverns for Thermal Energy Storage (열에너지 저장용 암반 공동의 최적 종횡비 결정을 위한 역학적 안정성 해석)

  • Park, Dohyun;Ryu, Dongwoo;Choi, Byung-Hee;Sunwoo, Choon;Han, Kong-Chang
    • Tunnel and Underground Space
    • /
    • v.23 no.2
    • /
    • pp.150-159
    • /
    • 2013
  • It is generally well known that the stratification of thermal energy in heat stores can be improved by increasing the aspect ratio (the height-to-width ratio) of the stores. Accordingly, it will be desirable to apply a high aspect ratio so as to demonstrate the good thermal performance of heat stores. However, as the aspect ratio of a store increases, the height of the store become larger compared to its width, which may be unfavorable for the structural stability of the store. Therefore, to determine an optimum aspect ratio of heat stores, a quantitative mechanical stability assessment should be performed in addition to thermal performance evaluations. In the present study, we numerically investigated the mechanical stability of silo-shaped rock caverns for underground thermal energy storage at different aspect ratios. The applied aspect ratios ranged from 1 to 6 and the mechanical stability was examined based on factor of safety using a shear strength reduction method. The results from the present study showed that the factor of safety of rock caverns tended to decrease with the increase in aspect ratio and the stress ratio of the surrounding rock mass was influential to the stability of the caverns. In addition, the numerical results demonstrated that under the same conditions of rock mass properties and aspect ratio, mechanical stability could be improved by the reduction in cavern size (storage volume), which indicates that one can design high-aspect-ratio rock caverns by dividing a single large cavern into multiple small caverns.