• Title/Summary/Keyword: height of contour

Search Result 130, Processing Time 0.027 seconds

A Prognosis Evaluation after Iliac Bone Graft in Cleft Alveolus Patients (치조열 환자의 장골이식술 후 예후 평가)

  • Hong Jin-Ho;Soh Byung-Soo;Baik Jin-Ah;Shin Hyo-Keun
    • Korean Journal of Cleft Lip And Palate
    • /
    • v.4 no.2
    • /
    • pp.69-78
    • /
    • 2001
  • Alveolar cleft exists in 75% of cleft patients, In alveolar cleft patients, alar base is widening, palatal fistular formation, maxillary growth disturbance & tooth loss of adjacent area is raised, Alveolar bone grafting, especially iliac bone grafting, is a general treatment method. As operation timing, bone grafting is classified with primary, early secondary, secondary, & late secondary, Here we report cleft width, marginal bone height, bone resorption rate, grafted shape & bone densities after secondary iliac bone grafting was done in the Dept. of oral and maxillofacial surgery of chonbuk national university hospital. We compared cleft width to bone resorption rate and grafted shape. Also, alveolar bone densities of grafted and contralateral site was compared with Emago 3 package? (Oral Diagonostic System, The Netherlands), The data obtained were analyzed using Spearman's rho coefficients and sign test with SPSS for window, The results were obtained as follows. 1. As alveolar cleft width is increase, bone resorption rate is, too. This relation showed significant difference(P<.01). 2, In proximal & distal area, alvolar cleft width and bone graft contour after bone grafting had a reverse proportional difference. It was not significant difference(P>.05). 3. After 3 month, in bone density results by using Emago 3 package? with periapical standard view, occlusal view & panoramic view, differences between grafted bone and alveolar bone of contralateral site didn't show a significant difference(P>.05). Thus, differences of bone densities in the alveolar bones didn't exist.

  • PDF

Nasal alar rim redraping method to prevent alar retraction in rhinoplasty for Asian men: A retrospective case series

  • Choi, Jun Ho;Yoo, Hyokyung;Kim, Byung Jun
    • Archives of Plastic Surgery
    • /
    • v.48 no.1
    • /
    • pp.3-9
    • /
    • 2021
  • Background For an attractive and natural tip contour in Asian rhinoplasty, insertion of a nasal implant and reinforcement of the cartilaginous framework are essential. However, scar contracture, which often results from augmentation with implant insertion and inadequate soft tissue coverage of the framework, is one of the most common causes of alar retraction. This study reports a novel method of redraping soft tissue along the alar rim to prevent alar retraction in Asians. Methods Twenty young Asian men who underwent primary rhinoplasty with septoplasty were retrospectively reviewed. After the usual rhinoplasty procedures, alar rim redraping was conducted for the soft tissue along the transcolumellar and bilateral infracartilaginous incisions. The longest axis of the nostril (a) and the height of the nostril from that axis (b) were measured in anterior-posterior and lateral views. The preoperative and postoperative ratios (b/a) were analyzed using the paired t-test. Results All 20 patients showed natural contours of the nasal tip, nostrils, and alae after a mean follow-up of 53.6 weeks (range, 52-60 weeks). The ratio of the nostril axes significantly decreased postoperatively in all patients except one, by an average of 11.08%±6.52% in the anterior-posterior view and 17.74%±8.49% in the lateral view (P<0.01). There were no complications, including asymmetry, contracture, subdermal plexus injury, flap congestion, or infection. Conclusions A quantitative analysis of alar retraction by evaluating the ratio of nostril axes showed that alar rim redraping is a simple and effective adjuvant technique for preventing alar retraction in rhinoplasty for young Asian men.

Experimental Study Of Supersonic Coanda Jet

  • Kim, Heuydong;Chaemin Im;Sunhoon, Woo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 1999.10a
    • /
    • pp.33-33
    • /
    • 1999
  • The Coanda effect is the tendency for a fluid jet to atach itself to an adjacent surface and follow its contour without causing an appreciable flow separation. The jet is pulled onto the surface by the low pressure region which develops as entrainment pumps fluid from the region between the jet and the surface. Then the jet is held to the wall surface by the resulting radial pressure gradient which balance the inertial resistance of the jet to turning. The jet may attach to the surface and may be deflected through more than 180 dog, when the radius of the Coanda surface is sufficiently large compared to the height of the exhaust nozzle. However, if the radius of curvature is small, the jet turns through a smaller angle, or may not attach to the surface at all. In general, the limitations in size and weight of a device will limit the radius of the deflection surface. Thus much effort has been paid to improve the jet deflection in a variety of engineering fields. The Coanda effect has long been applied to improve aerodynamic characteristics, such as the drag/lift ratio of flight body, the engine exhaust plume thrust vectoring, and the aerofoil/wing circulation control. During the energy crisis of the seventies, the Coanda jet was applied to reduce vehicle drag and led to drag reductions of as much as about 30% for a trailer configuration. Recently a variety of industrial applications are exploiting another characteristics of the Coanda jets, mainly the enhanced turbulence levels and entrainment compared with conventional jet flows. Various industrial burners and combustors are based upon this principle. If the curvature of the Coanda surface is too great or the operating pressure too high, the jet flow will break away completely from the surface. This could have catastrophic consequences for a burner or combustor. Detailed understanding of the Coanda jet flow is essential to refine the design to maximize the enhanced entrainment in these applications.

  • PDF

Surface Properties of Artificial Suedes (인조 스웨이드의 표면특성)

  • Roh, Eui Kyung;Oh, Kyung Wha
    • Fashion & Textile Research Journal
    • /
    • v.15 no.2
    • /
    • pp.309-315
    • /
    • 2013
  • This study examines the difference of surface properties according to napping characteristic of artificial suedes, measuring surface structure observation, the contact/non-contact method roughness, warm-cool feeling of touch, and subjective hand evaluation. Surface and cross-section observations showed a discernible difference in fineness, curl, length, mount of napping, and covering power of base fabric. The surface properties of artificial suede evaluated by KES-FB4 showed that the shorter napping length the more smooth surface and the roughness increased reciprocally with friction resistance and surface contour when the nap length reaches a high level. The surface roughness measuring system applied a laser displacement sensor by a non-contact method to assess napping characteristic and the base fabric and napping height. Surface roughness decreased when napping was uniformly covered with base fabric; however, the surface roughness increased specifically with the uneven covering power of the base fabric. For qmax of the suedes, those that had short and smaller amounts of napping increased; however, the napping of length and amount at some stage generated a low qmax value. The warm sensation in all suedes were strongly perceived, but the cool sensation of the perception was lower in the subjective evaluation. Smoothness and softness were perceived when the suede has a long and large amount napping; however, smoothness and hardness were perceived when the suede was short and with the uneven covering power.

Damage detection in structures using modal curvatures gapped smoothing method and deep learning

  • Nguyen, Duong Huong;Bui-Tien, T.;Roeck, Guido De;Wahab, Magd Abdel
    • Structural Engineering and Mechanics
    • /
    • v.77 no.1
    • /
    • pp.47-56
    • /
    • 2021
  • This paper deals with damage detection using a Gapped Smoothing Method (GSM) combined with deep learning. Convolutional Neural Network (CNN) is a model of deep learning. CNN has an input layer, an output layer, and a number of hidden layers that consist of convolutional layers. The input layer is a tensor with shape (number of images) × (image width) × (image height) × (image depth). An activation function is applied each time to this tensor passing through a hidden layer and the last layer is the fully connected layer. After the fully connected layer, the output layer, which is the final layer, is predicted by CNN. In this paper, a complete machine learning system is introduced. The training data was taken from a Finite Element (FE) model. The input images are the contour plots of curvature gapped smooth damage index. A free-free beam is used as a case study. In the first step, the FE model of the beam was used to generate data. The collected data were then divided into two parts, i.e. 70% for training and 30% for validation. In the second step, the proposed CNN was trained using training data and then validated using available data. Furthermore, a vibration experiment on steel damaged beam in free-free support condition was carried out in the laboratory to test the method. A total number of 15 accelerometers were set up to measure the mode shapes and calculate the curvature gapped smooth of the damaged beam. Two scenarios were introduced with different severities of the damage. The results showed that the trained CNN was successful in detecting the location as well as the severity of the damage in the experimental damaged beam.

Selection of Implants in Unilateral Prosthetic Breast Reconstruction and Contralateral Augmentation

  • Kim, Soo Jung;Song, Seung Yong;Lew, Dae Hyun;Lee, Dong Won
    • Archives of Plastic Surgery
    • /
    • v.44 no.5
    • /
    • pp.413-419
    • /
    • 2017
  • Background In breast reconstruction using implants after unilateral mastectomy, it is challenging to create a natural, ptotic contour, and asymmetry is a potential drawback. To achieve breast symmetry and an ideal shape for both breasts, we performed contralateral augmentation in patients undergoing breast reconstruction with implants. Methods Patients underwent unilateral mastectomy and 2-stage reconstruction. During the second stage of the procedure, contralateral augmentation mammoplasty was performed. Preoperatively, we obtained the patients' demographic information, and we then assessed breast volume, the volume and dimensions of the inserted implants, and complications. Breast symmetry was observed by the surgeon and was assessed by measuring the disparity between the final volume of each breast. Results Contralateral augmentation was performed in 52 cases. When compared to patients who did not undergo a contralateral balancing procedure, patients who received contralateral augmentation were younger, thinner, and had smaller breasts. During implant selection for contralateral augmentation, we chose implants that were approximately 1 cm shorter in width, 1 level lower in height, and 1 or 2 levels lower in projection than the implants used for reconstruction. The postoperative breast contours were symmetric and the final volume discrepancy between each breast, which was measured by 3-dimensional scanning, was acceptable. Conclusions We demonstrate that contralateral augmentation can be recommended for patients who perceive their breasts to be small and not beautiful in order to achieve an ideal and beautiful shape for both breasts. Furthermore, this study offers guidelines for selecting the implant that will lead to the optimal aesthetic outcome.

Automatic segmentation of a tongue area and oriental medicine tongue diagnosis system using the learning of the area features (영역 특징 학습을 이용한 혀의 자동 영역 분리 및 한의학적 설진 시스템)

  • Lee, Min-taek;Lee, Kyu-won
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.4
    • /
    • pp.826-832
    • /
    • 2016
  • In this paper, we propose a tongue diagnosis system for determining the presence of specific taste crack area as a first step in the digital tongue diagnosis system that anyone can use easily without special equipment and expensive digital tongue diagnosis equipment. Training DB was developed by the Haar-like feature, Adaboost learning on the basis of 261 pictures which was collected in Oriental medicine. Tongue candidate regions were detected from the input image by the learning results and calculated the average value of the HUE component to separate only the tongue area in the detected candidate regions. A tongue area is separated through the Connected Component Labeling from the contour of tongue detected. The palate regions were divided by the relative width and height of the tongue regions separated. Image on the taste area is converted to gray image and binarized with each of the average brightness values. A crack in the presence or absence was determined via Connected Component Labeling with binary images.

Development of Shape refining process of VLM-ST Parts Using Noncontacting Hot Tool (비접촉식 열공구를 이용한 VLM-ST 제품의 미세 형상 가공 공정 개발에 관한 연구)

  • 김효찬;이상호;안동규;양동열
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.1
    • /
    • pp.149-158
    • /
    • 2004
  • In most RP processes, the inherent stair-stepped surfaces and shrinkage-induced warping of the parts require post processing such as surface finishing. To minimize such defects, VLH-ST, a newly developed RP process, employs a 3.9-mm thick expandable polystyrene (EPS) foam sheet and a hot wire to contour it to have slant linear-interpolated sides. The use of relatively thick sheets for layers, however, limits the process capability of constructing fine details, especially smaller than the layer thickness. This study is focused on the development of a post processing method fo fine details of VLM-ST parts. The post-processing tool was designed to meet all the requirements for the desirable post processing. It adopted a hot wire as a means of melting the EPS foam sheet. Various basic experiments on the post processing were carried out to obtain the optimal process conditions. The dominant process parameters such as the radiated heat input, the tool speed, and the gap between the tool tip and the foam sheet (tool height) were considered in the experiments. The effectiveness of the developed post-processing method fo forming or engraving fine details on the VLM-ST parts has been thus demonstrated. The experiments on engraving several sets of letters, such as CANESM, 인간, and 한국과학기술원, on the EPS foam sheet were carried out. In addition, a flowery shape was engraved on a three-dimensionally curved surface of a pottery-shape VLM-ST part.

Blood Flow Rate Estimation using Proximal Isovelocity Surface Area Technique Based on Region-Based Contour Scheme and Surface Subdivision Flow Model (영역기반 윤곽선 기법과 표면 분할 유동모델에 기반한 근위 등속 표면적 기법을 이용한 혈류량 추정)

  • Jin, Kyung-Chan;Cho, Jin-Ho
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.38 no.1
    • /
    • pp.45-52
    • /
    • 2001
  • The proximal isovelocity surface area (PISA) method is an effective way of measuring the regurgitant blood flow rate in the mitral valve. This method defines the modelling required to describe the geometry of the isotach of the PISA. In the normal PISA flow model, the flow rate is calculated assuming that the surface of the isotach is either hemispherical or non-hemispherical numerically. However, this paper evaluated the estimate flow rate using a direct surface subdivision flow model based on the height field after isotach extraction using a region-based scheme. To validate the proposed method, the various PISA flow models were compared using pusatile color Doppler images with flow rates ranging from $30\;cm^3/sec\;to\;60\;cm^3/sec$ flow rate. Whereas the hemispherical flow model had a mean value of $29\;cm^3/sec$ and underestimated the measured flow rate by 35%, the proposed model and non-hemispherical model produced a c;ame mean value of $45\;cm^3/sec$, moreover, both flow models produced a similar pulsatile flow rate.

  • PDF

Comparison Analysis of Methods for Smoothing the Stream Profiles Extracted from Digital Elevation Models and Suggestion of a New Smoothing Method (DEM에서 추출한 하천종단곡선의 평활화 방법 고찰 및 새로운 방법의 제안)

  • Byun, Jongmin;Seong, Yeong Bae
    • Journal of the Korean Geographical Society
    • /
    • v.49 no.3
    • /
    • pp.339-356
    • /
    • 2014
  • Easy access to DEMs and the development of technology treating DEMs make it easier to extract stream longitudinal profiles from DEMs than previously done. Since such profiles possess many problems such as artificial flats and steps, it should be required for them to be smoothed like natural profiles to estimate gradient values along those sections. However smoothing itself comes with much distortion of raw profile from original DEMs. There has been no research evaluating quantitatively the effects due to smoothing process. Here we attempt to quantify the effects of major smoothing methods on raw and real profiles, suggest a new method to overcome the limitations of them, and evaluate it. This study not only suggests a new smoothing method, but also provides a guideline for choosing a proper smoothing method.

  • PDF