• 제목/요약/키워드: heavy weight concrete

검색결과 105건 처리시간 0.018초

고성능 경량 폴리머 콘크리트의 역학적 특성에 관한 실험적 연구 (An Experimental Study on the Mechanical Properties of High Performance Lightweight Polymer Concrete)

  • 성찬용
    • 한국농공학회지
    • /
    • 제37권3_4호
    • /
    • pp.72-81
    • /
    • 1995
  • This study was performed to evaluate the mechanical properties of high performance lightweight polymer concrete using fillers and synthetic lightweight coarse aggregate. The following conclusions were drawn. 1. The unit weight of the G3, G4 and G5 concrete was 1.500t/m$^3$, 1.506t/m$^3$ and 1.535t/m$^3$, respectively. Specially, the unit weights of those concrete were decreased 33~35% than that of the normal cement concrete. 2. The highest strength was achieved by heavy calcium carbonate, it was increased 27% by compressive, 95% by tensile and 195% by bending strength than that of the normal cement concrete, respectively. 3. The elastic modulus was in the range of 8.0 x 104~ 10.4 x lO4kg/cm2, which was approximately 35~42% of that of the normal cement concrete. Normal cement concrete was showed relatively higher elastic modulus. 4. The ultrasonic pulse velocity of fillers was in the range of 2, 900m/sec, which was showed about the same compared to that of the normal cement concrete. Heavy calcium carbonate was showed higher pulse velocity. 5. The compressive, tensile, bending strength and ultrasonic pulse velocity were largely showed with the increase of unit weight.

  • PDF

중량충격원에 따른 콘크리트 바닥판의 차음특성 분석 및 평가에 관한 연구 (Analysis and Evaluation of Impact Sound Insulation of Concrete Floor Structures in Response to Characteristics of Heavy-weight Impact Sources)

  • 유승엽;연준오;전진용
    • 한국소음진동공학회논문집
    • /
    • 제19권10호
    • /
    • pp.1062-1068
    • /
    • 2009
  • In this study, the impact force levels of bang machine and impact ball were measured, then the heavy-weight impact sounds generated by the bang machine and impact ball were investigated. It was found that the heavy-weight impact sources generated through modal excitation, and the impact force of the impact ball was similar to that of real impact source. The heavy-weight impact sounds were also measured in the real apartments with different slab thickness and floor structures. The results showed that the floor impact sound levels in terms of $L_{iFmax,AW}$, generated by impact ball sounds were reduced by using the resilient isolators. The frequency characteristics of heavy-weight impact sounds at 125 and 250 Hz were consistent with the characteristics of impact force spectrum. However, the difference between the impact sounds and the impact forces were found at 63 and 500 Hz due to the resonance of the floor structure and flanking noise, respectively.

표준실험동에서 중량충격음의 방사 특성 (Radiation Characteristics of Heavy-weight Floor Impact Sounds in a Standard Test Building)

  • 유승엽;정영;전진용
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 추계학술대회논문집
    • /
    • pp.381-384
    • /
    • 2005
  • The purpose of this study is to develop a prediction model for evaluating heavy-weight floor impact sounds in a test building. Three rooms in the test building (slab thickness In and 240mm), which consist of frame concrete structures were tested and modeled. First, the SPL distribution in the receiving room was analyzed by measuring SPL at 90 positions using a bang machine. Then, a vibration model using finite element method is proposed considering the material properties and boundary conditions. In addition, the result of transient analysis was compared with field measurements using a standard heavy-weight impact source. Through a vibro-acoustic simulation program, an acoustic model evaluating the building elements (reflected wall, nor, window and door) was proposed. Finally, validation of the prediction model was conducted by vibro-acoustic analysis with field measurements of noise radiation characteristics in receiving rooms.

  • PDF

데크플레이트와 경량성형재가 결합된 슬래브의 차음성능에 대한 실물실험 평가 (A Study on the Sound Insulation for Void-deck Slab Combined with Deck Plate and Polystyrene Void Foam)

  • 노영숙;윤성호
    • 한국안전학회지
    • /
    • 제30권1호
    • /
    • pp.60-65
    • /
    • 2015
  • This study is to explore floor impact sound and sound insulation of reinforced concrete structure with void-deck slab system which combines polystyrene void foam and T-shaped steel deck plate. A void-deck slab system can effectively reduce the amount of concrete used and hence the mass of a reinforced concrete slab. Also void slab system has dynamically favorable for bending. Three-bay 2-story building was constructed as a mock up test specimen using void-deck slab system and floor impact sound was measured to valuate sound insulation performance. Light weight floor impact and heavy weight floor impact were investigated. Light weight floor impact pressure levels were 32dB, 28dB, and 29db at representative locations which are $1^{st}$ level in the floor impact sound insulation performance grading system. The heavy-weight floor impact pressure levels were 44dB, 45dB, and 43dB at representative locations which are $2^{nd}$ level in the floor impact sound insulation performance grading system. Therefore void-deck slab system can be used in public housing apartment building in terms of not only effectively reduced construction materials but also floor impact sound insulation.

VOLUME REDUCTION OF DISMANTLED CONCRETE WASTES GENERATED FROM KRR-2 AND UCP

  • Min, Byung-Youn;Choi, Wang-Kyu;Lee, Kune-Woo
    • Nuclear Engineering and Technology
    • /
    • 제42권2호
    • /
    • pp.175-182
    • /
    • 2010
  • As part of a fundamental study on the volume reduction of contaminated concrete wastes, the separation characteristics of the aggregates and the distribution of the radioactivity in the aggregates were investigated. Radioisotope $^{60}Co$ was artificially used as a model contaminant for non-radioactive crushed concrete waste. Volume reduction for radioactively contaminated dismantled concrete wastes was carried out using activated heavy weight concrete taken from the Korea Research Reactor 2 (KRR-2) and light weight concrete from the Uranium Conversion Plant (UCP). The results showed that most of the $^{60}Co$ nuclide was easily separated from the contaminated dismantled concrete waste and was concentrated mainly in the porous fine cement paste. The heating temperature was found to be one of the effective parameters in the removal of the radionuclide from concrete waste. The volume reduction rate achieved was above 80% for the KRR-2 concrete wastes and above 75% for the UCP concrete wastes by thermal and mechanical treatment.

기포제 관점에서 경량기포 콘크리트의 개선방향에 관한 문헌적 연구 (Literature study on the improvement of lightweight concrete in perspective of foaming agent)

  • 최명인;이한승
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2015년도 추계 학술논문 발표대회
    • /
    • pp.141-142
    • /
    • 2015
  • This literature study is focused on the improvement of lightweight concrete in perspective of foaming agent. Lightweight concrete is the cured concrete as putting required amount of foaming agent to slurry which is a mixture of a certain amount of cement, sand, and water. It has lower density than general concrete, because foaming agent disintegrates numerous bubbles evenly and independently. Thus, it is capable of lightening the weight and great for sound absorption and insulation, In foreign countries, studies for structural lightweight concrete mainly of tunnel grouting and weight lightening of heavy structures are going along actively. Domestically, exterior panel and ALC blocks are alternatively used for flooring. Therefore, this research consider improvement of lightweight concrete in perspective of foaming agent with foundation study.

  • PDF

벽식구조 바닥판의 중량충격음 특성 분석을 위한 축소모형의 활용 (Experimental Studies for Analysing of Characteristics of Floor Impact Sound through a Scale Model with Box-frame Type Structure)

  • 유승엽;전진용
    • 한국소음진동공학회논문집
    • /
    • 제21권9호
    • /
    • pp.805-812
    • /
    • 2011
  • This study investigated the characteristics of heavy-weight floor impact sounds of box-frame type structure using 1:10 scale model. Ten types of floor structures(bare slabs and floating floors) were evaluated in terms of dynamic stiffness and loss factor. Floor vibrations and radiated sounds generated by simulated impact source were also measured. The results showed that the bakelite was appropriate for simulating concrete slab in the 1:10 scale model, and surface velocity and sound pressure level of concrete slab measured from the scale model showed similar tendencies with the results from in-situ in frequency domain. It was also found that dynamic behaviors of layered floor structures in the 1:10 scale model were similar to those in a real scale. Therefore, the use of 1:10 scale model would be useful for evaluating the heavy-weight floor impact sound insulation of layered floor structures when the frequency-dependent dynamic properties of each material are known.

시스템 해석을 이용한 뜬바닥구조에서의 바닥구조 동특성과 뱅머신의 충격력 특성 분석 (An Analysis of Characteristics of Floor Dynamic Properties and Bang-machine Impact Force on Floating Floor Using System Analysis)

  • 문대호;박홍근;황재승;홍건호
    • 한국소음진동공학회논문집
    • /
    • 제24권5호
    • /
    • pp.390-398
    • /
    • 2014
  • Heavy-weight floor impact noise is directly related to the impact source and floor vibration property. Dynamic properties of the standard floating floor that is used in Korea was investigated using accelerance, acceleration energy spectral density(ESD), and structural modal test. In the standard floating floor, natural frequency was decreased by the finishing mortar mass and the damping ratio was increased. Bang-machine force spectrum acting on the concrete slab can be calculated using inverse system analysis. Impact force acting on concrete slab is changed by interaction of finishing mortar and resilient material. The amplitude of the bang-machine force spectrum was amplified in low frequency range(below 100 Hz), and over 100 Hz was decreased. Changed force spectrum influence to the response of structure vibration, so the heavy-weight floor impact noise level was changed.

콘크리트의 기건 단위질량을 고려한 인장강도 예측모델 제안 (A Proposal of Tensile Strength Prediction Models Considering Unit Weight of Concrete)

  • 심재일;양근혁
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제16권4호
    • /
    • pp.107-115
    • /
    • 2012
  • 본 연구에서는 경량 콘크리트에 대한 361개, 보통중량 콘크리트에 대한 1,335개 및 고중량 콘크리트에 대한 221개의 데이터를 이용하여 콘크리트의 인장강도 (직접인장강도, 쪼갬인장강도 및 파괴계수)에 대한 설계기준과 기존 연구자들의 제안모델의 안정성을 평가하였다. 콘크리트 인장강도 예측을 위한 대부분의 제안 식들은 보통중량 콘크리트의 실험결과를 이용하여 압축강도의 함수로서 제시되었다. 하지만 데이터베이스의 분석은 콘크리트 인장강도는 기건 단위질량에 의해서도 중요한 영향을 받음을 보여준다. 이에 따라, 콘크리트 인장강도에 대한 기준 및 제안모델들은 기건 단위질량 2,100 $kg/m^3$ 이하, 압축강도 50 MPa 이상에서는 실험결과와의 불일치가 증가하였다. 한편, 본 연구에서 콘크리트 기건 단위질량을 고려하여 제시된 콘크리트 인장강도 예측 모델들은 실험결과와 비교적 잘 일치하였다.

자철광 골재를 이용한 중량콘크리트의 방사성차폐에 관한 연구 (A Study on the Radiation Shielding Properties of Heavy Weight Concrete Using Magnetite Aggregate)

  • 송창영;김명재;장철인;부척량
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1998년도 가을 학술발표논문집(II)
    • /
    • pp.251-257
    • /
    • 1998
  • Concrete is considered to be one of the excellent and versatile shielding material and is widely used for the radiation shielding materials. This paper aims to study mechanical properties of concrete by using normal cement, natural and heavyweight aggregate and their radiation shielding effects through radiation transmission tests.

  • PDF