• Title/Summary/Keyword: heavy timber

Search Result 31, Processing Time 0.024 seconds

Effect of End-coating Around Pith of Heavy Timbers of Red Pine and Korean Pine on High-temperature and Low-humidity Drying Characteristics (중심부분 엔드코팅처리가 국산 소나무와 잣나무 중목구조부재의 고온저습건조 특성에 미치는 영향)

  • Lee, Chang-Jin;Lee, Nam-Ho;Eom, Chang-Deuk;Shin, Ik-Hyun;Park, Moon-Jae;Park, Joo-Saeng
    • Journal of the Korean Wood Science and Technology
    • /
    • v.41 no.3
    • /
    • pp.221-233
    • /
    • 2013
  • This study was performed to identify the effect of end-coating around pith of heavy timbers of Red pine and Korean pine on high temperature and low humidity drying characteristics. Total drying times were 268 hours, and ranges of final moisture content was investigated that Red Pine 9.2% to 10.8% MC for square and round timber, in case of Korean Pine 15.0% to 22.0% MC for square timber, 12.8% to 20.4% MC for round timber. Moisture content distribution of Red Pine was a uniform, but part of high moisture content was found in Korean Pine. In case of Korean pine, the surface checks were occurred more severe than in case of Red pine, and end-coating treatment were investigated to be ineffective on surface check. The internal checks were only formed on the two timbers. The value of the case hardenings was investigated that the ranges 3.7% to 9.1% for Red pine. In case of Korean pine, on the other hand, the case hardenings presence a few as 20.9% to 35.8%.

Teak (Tectona grandis Linn. f.): A Renowned Commercial Timber Species

  • Palanisamy, K.;Hegde, Maheshwar;Yi, Jae-Seon
    • Journal of Forest and Environmental Science
    • /
    • v.25 no.1
    • /
    • pp.1-24
    • /
    • 2009
  • Teak (Tectona grandis) is one of the most valuable timber yielding species in the world, with predominant distribution in tropical or sub-tropical countries. However, natural teak available only in few countries like India, Myanmar, Laos People's Democratic Republic and Thailand. Teak grows well in deep, well-drained alluvial soils, fairly moist, warm, tropical climate with pH ranges from 6.5-7.5. Teak is cultivated in many Asian, African and South American countries for timber production. The global teak plantations are estimated to be three million hectare with major share in India (44%) followed by Indonesia (33%). India is considered as richest genetic resources of teak with large areas of natural teak bearing forests (8.9 million ha), plantations (1.5 million ha), clonal seed orchards (1000 ha) and seed production areas (5000 ha). The studies on diversity of teak populations showed that teak is an out crossing species with major portion of diversity present within the populations. The productivity and quality of teak timber varies depending upon the site and environmental conditions. Teak wood is moderately heavy, strong and tough,straight grained, coarse textured and ring porous with specific gravity varies from 0.55 to 0.70. The sapwood is white to pale yellow in colour and clearly demarcated while heartwood is dark brown or dark golden yellow in colour. Teak is one of the most durable timbers in the world, practically, impervious to fungus and white ant attack and resistant to decay. Teak wood is used in ship and boat constructions, furnitures and aesthetic needs. Genetic improvement programmes have been undertaken in countries like Thailand, India, Malaysia and Indonesia. The programme includes provenance identification and testing, plus tree selection and clonal multiplication, establishment of seed orchards and controlled hybridization. Several aspects like phenology, reproductive biology, fruit characteristics, silvicultural practices for cultivation, pest and diseases problems, production of improved planting stock, harvesting and marketing, wood properties and future tree improvement strategy to enhance productivity have been discussed in this paper.

  • PDF

Monitoring in-service performance of fibre-reinforced foamed urethane sleepers/bearers in railway urban turnout systems

  • Kaewunruen, Sakdirat
    • Structural Monitoring and Maintenance
    • /
    • v.1 no.1
    • /
    • pp.131-157
    • /
    • 2014
  • Special track systems used to divert a train to other directions or other tracks are generally called 'railway turnout'. A traditional turnout system consists of steel rails, switches, crossings, steel plates, fasteners, screw spikes, timber bearers, ballast and formation. The wheel rail contact over the crossing transfer zone has a dip-like shape and can often cause detrimental impact loads on the railway track and its components. The large impact also emits disturbing noises (either impact or ground-borne noise) to railway neighbors. In a brown-field railway track where an existing aged infrastructure requires renewal or maintenance, some physical constraints and construction complexities may dominate the choice of track forms or certain components. With the difficulty to seek for high-quality timbers with dimensional stability, a methodology to replace aged timber bearers in harsh dynamic environments is to adopt an alternative material that could mimic responses and characteristics of timber in both static and dynamic loading conditions. A critical review has suggested an application of an alternative material called fibre-reinforced foamed urethane (FFU). The full-scale capacity design makes use of its comparable engineering characteristics to timber, high-impact attenuation, high damping property, and a longer service life. A field trial to investigate in-situ behaviours of a turnout grillage system using an alternative material, 'fibre-reinforced foamed urethane (FFU)' bearers, has been carried out at a complex turnout junction under heavy mixed traffics at Hornsby, New South Wales, Australia. The turnout junction was renewed using the FFU bearers altogether with new special track components. Influences of the FFU bearers on track geometry (recorded by track inspection vehicle 'AK Car'), track settlement (based on survey data), track dynamics, and acoustic characteristics have been measured. Operational train pass-by measurements have been analysed to evaluate the effectiveness of the replacement methodology. Comparative studies show that the use of FFU bearers generates higher rail and sleeper accelerations but the damping capacity of the FFU help suppress vibration transferring onto other track components. The survey data analysis suggests a small vertical settlement and negligible lateral movement of the turnout system. The static and dynamic behaviours of FFU bearers appear to equate that of natural timber but its service life is superior.

A Study on Floor Impact Sound Insulation Performance of Cross-Laminated Timber (CLT): Focused on Joint Types, Species and Thicknesses

  • Yeon-Su HA;Hyo-Jin LEE;Sang-Joon LEE;Jin-Ae SHIN;Da-Bin SONG
    • Journal of the Korean Wood Science and Technology
    • /
    • v.51 no.5
    • /
    • pp.419-430
    • /
    • 2023
  • In this study, the floor impact sound insulation performance of Korean domestic Cross-Laminated Timber (CLT) slabs was evaluated according to their joint types, species and thicknesses in laboratory experiments. The sound insulation performance of the CLT has not been investigated before, thus, this study was conducted to quantify basic data on floor impact sound insulation performance of CLT slabs. 5-ply and 150 mm thick CLT panels made of 2 species, Larix kaempferi and Pinus densiflora, were used for the study. The CLT panels were assembled by 3 types of inter-panel joints to form floor slabs: spline, butt and half-lap. And the 150 mm thick Larix CLT slabs were stacked to the thicknesses of 300 mm and 450 mm. The heavy-weight floor impact sound insulation performance of the 150 mm CLT slabs were evaluated to be 70 dB for the Larix slabs and 71.6 dB for the Pinus slabs, and the light-weight floor impact sound insulation performance, 78.3 dB and 79.6 dB, respectively. No significant difference in the sound insulation performance was found between the slabs of the 2 species or among the 3 types of joints. The reduction of 1 dB in the heavy-weight floor impact sound and 1.6 dB in the light-weight floor impact sound per 30 mm increase in thickness were confirmed through the experiments. This study can be viewed as the basic research for the evaluation of floor impact sound insulation performance of CLT.

Application of a weight-of-evidence model to landslide susceptibility analysis Boeun, Korea

  • Moung-Jin, Lee;Yu, Young-Tae
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • 2003.04a
    • /
    • pp.65-70
    • /
    • 2003
  • The weight-of-evidence model one of the Bayesian probability model was applied to the task of evaluating landslide susceptibility using GIS. Using the location of the landslides and spatial database such as topography, soil, forest, geology, land use and lineament, the weight-of-evidence model was applied to calculate each factor's rating at Boun area in Korea where suffered substantial landslide damage fellowing heavy rain in 1998, The factors are slope, aspect and curvature from the topographic database, soil texture, soil material, soil drainage, soil effective thickness, and topographic type from the soil database, forest type, timber diameter, timber age and forest density from the forest map, lithology from the geological database, land use from Landsat TM satellite image and lineament from IRS satellite image. Tests of conditional independence were performed for the selection of the factors, allowing the 43 combinations of factors to be analyzed. For the analysis, the contrast value, W$\^$+/and W$\^$-/, as each factor's rating, were overlaid to map laudslide susceptibility. The results of the analysis were validated using the observed landslide locations, and among the combinations, the combination of slope, curvature, topographic, timber diameter, geology and lineament show the best results. The results can be used for hazard prevention and planning land use and construction

  • PDF

Evaluation of floor impact sound and airborne sound insulation performance of cross laminated timber slabs and their toppings (구조용 직교 집성판 슬래브와 상부 토핑 조건에 따른 바닥충격음 및 공기전달음 평가)

  • Hyo-Jin Lee;Yeon-Su Ha;Sang-Joon Lee
    • The Journal of the Acoustical Society of Korea
    • /
    • v.42 no.6
    • /
    • pp.572-583
    • /
    • 2023
  • Demand for wood in construction is increasing worldwide. In Korea, technical reviews of high-rise Cross Laminated Timber (CLT) buildings are under way. In this paper, Floor Impact Sound Insulation Performance (FISIP) and Transmission Loss (TL) of 150 mm thick CLT floor panels made of two domestic species, Larix kaempferi and Pinus densiflora, are investigated. The CLT slabs were tested in reverberation chambers connected vertically. When comparing Single Number Quantity (SNQ) of FISIP of the bare panels, the Larix CLT is 3 dB lower in heavy-weight and 1 dB in light-weight than the Pinus CLT. However, there was no difference when concrete toppings were added to improve the performance. As the concrete toppings became thicker, the heavy-weight was reduced by 9 dB ~ 20 dB, and the light-weight by 20 dB ~ 30 dB. And the analysis of these results with area density has confirmed that the area densities are highly correlated (R2 = 0.94 ~ 0.99) to the FISIP of the CLT. The types of CLT didn't affect the TL. Comparison of theoretical TL values with measured TL values has shown that the frequency characteristics are similar but 8 dB ~ 12 dB lower in measured values. The relationship between the TL and frequency characteristics of the tested CLT slabs was derived by using the correction value.

Effects of The Knife-incising and Kerfing Pretreatment on Moisture Content and Surface Check Occurrence of Douglas-fir Heavy Timber (배할 및 자상-인사이징 전처리가 Douglas-fir 중목구조부재의 함수율과 재면할렬 발생에 미치는 영향)

  • Lee, Chang-Jin;Lee, Nam-Ho;Oh, Seung-Won
    • Journal of the Korean Wood Science and Technology
    • /
    • v.44 no.3
    • /
    • pp.302-314
    • /
    • 2016
  • This study was carried out to confirm the effects of the knife-incising and kerfing pretreatment on the moisture content and surface check occurrence of Douglas-fir heavy timber. In the case of moisture content, the moisture gradient that formed in the inner part of the specimen was observed in all specimens. In addition, the moisture gradient was formed differently from the surface layer to 72 mm depending on the pretreatment conditions, and it was formed gradually in the kerfing than the knife-incising. In addition, it was found that the solid volume should be considered when measuring the average moisture content. In the case of surface check, the surface check occurrence was reduced in the knife-incising, kerfing, and the combination of knife-incising and kerfing than the control. In particular, the kerfing treatment was shown that the expansion of surface check width was effectively suppressed. In the case of knife-incising treatment, although the surface check was less than the control, the preventive effect on the surface check occurrence did not reach the level of the kerfing treatment.

A Study on the transformation Pross of Vernacular Houses in Ulleung-Island -Focused on wall, roof, window and ceiling- (울릉도 민가의 변화과정에 관한 연구 -벽체, 지붕, 창호, 천장을 중심으로-)

  • Kim Chan-Yeong
    • Journal of the Korean housing association
    • /
    • v.15 no.5
    • /
    • pp.85-96
    • /
    • 2004
  • The purpose of this study was to (md out the characteristics of the residential house in Ulleung Island in terms of building materials, structure and construction method, structural design by actual field surveys. This study found several facts; First, the house was classified into the log house and mud-wall house according to building material for wall structure. The log house prevailed in the early days of the settlement in the island because of affulent timber materials available around. However, the mud wall house became a popular type in later days because of the depletion of timber materials. Second, the Udeki wall was an unique installation reflecting the severe climate conditions of Ulleung Island. However, many aspects of the Udeki wall was changed according to the change of living style and the introduction of modem heating systems in terms of its function, size, building material, layout position etc. Third, the roofing material also has been changed from materials available locally to slate materials transported from the mainland. Fourth, the bamboo slender-ribbed door as a single-swing door type was popular and later time the single-sliding door or three ribbed door was widely used in rooms installed later instead. Fifth, the roof was placed over the room, kitchen, and Chukdam (outer wall) and this was a resonable way to cope with heavy snowfalls in the winter season in Ulleung Island.

Environmental Changes after Timber Harvesting in (Mt.) Paekunsan (백운산(白雲山) 성숙활엽수림(成熟闊葉樹林) 개벌수확지(皆伐收穫地)에서 벌출직후(伐出直後)의 환경변화(環境變化))

  • Park, Jae-Hyeon
    • Journal of Korean Society of Forest Science
    • /
    • v.84 no.4
    • /
    • pp.465-478
    • /
    • 1995
  • The objective of this study was to investigate the impacts of large-scale timber harvesting on the environment of a mature hardwood forest. To achieve the objective, the effects of harvesting on forest environmental factors were analyzed quantitatively using the field data measured in the study sites of Seoul National University Research Forests [(Mt.) Paekunsan] for two years(1993-1994) following timber harvesting. The field data include information on vegetation, soil mesofauna, physicochemical characteristics of soil, surface water runoff, water quality in the stream, and hillslope erosion. For comparison, field data for each environmental factor were collected in forest areas disturbed by logging and undisturbed, separately. The results of this study were as follows : The diversity of vegetational species increased in the harvested sites. However, the similarity index value of species between harvested and non-harvested sites was close to each other. Soil bulk density and soil hardness were increased after timber harvesting, respectively. The level of organic matter, total-N, avail $P_2O_5$, CEC($K^+$, $Na^+$, $Ca^{{+}{+}}$, $Mg^{{+}{+}}$) in the harvested area were found decreased. While the population of Colembola spp., and Acari spp. among soil mesofauna in harvested sites increased by two to seven times compared to those of non-harvested sites during the first year, the rates of increment decreased in the second year. However, those members of soil mesofauna in harvested sites were still higher than those of non-harvested sites in the second year. The results of statistical analysis using the stepwise regression method indicated that the diversity of soil mesofauna were significantly affected by soil moisture, soil bulk density, $Mg^{{+}{+}}$, CEC, and soil temperature at soil depth of 5(0~10)cm in the order of importance. The amount of surface water runoff on harvested sites was larger than that of non-harvested sites by 28% in the first year and 24.5% in the second year after timber harvesting. The level of BOD, COD, and pH in the stream water on the harvested sites reached at the level of the domestic use for drinking in the first and second year after timber harvesting. Such heavy metals as Cd, Pb, Cu, and organic P were not found. Moreover, the level of eight factors of domestic use for drinking water designated by the Ministry of Health and Welfare of Korea were within the level of the first class in the quality of drinking water standard. The study also showed that the amount of hillslope erosion in harvested sites was 4.77 ton/ha/yr in the first year after timber harvesting. In the second year, the amount decreased rapidly to 1.0 ton/ha/yr. The impact of logging on hillslope erosion in the harvested sites was larger than that in non-harvested sites by seven times in the first year and two times in the second year. The above results indicate that the large-scale timber harvesting cause significant changes in the environmental factors. However, the results are based on only two-year field observation. We should take more field observation and analyses to increase understandings on the impacts of timber harvesting on environmental changes. With the understandings, we might be able to improve the technology of timber harvesting operations to reduce the environmental impacts of large-scale timber harvesting.

  • PDF

Stabilization Method by Timber Pile for Fill Slope Failure on Forest Road (임도(林道) 성토사면(盛土斜面)의 소경재(小經材) 붕괴억지공법(崩壞抑止工法)에 관한 연구(硏究))

  • Ji, Byoung Yun;Jung, Do Hyun;Kim, Jong Yoon;Cha, Du Song
    • Journal of Forest and Environmental Science
    • /
    • v.17 no.1
    • /
    • pp.104-115
    • /
    • 2001
  • This study was carried out to to execute the slope stabilization scheme of soil and weathered rock slope with forest road generating slope failure due to heavy rainfall. The timber piled stabilization by Shin's formulae for landslide-restraint pile as elastically supported elastic columns under distributed loads was applied on the unstable fill slope. The results obtained were summarized as follows: The timber piled stabilization was applied for unstable slopes such as the soil slope and weathered rock slope of metamorphic rock regions. The results indicated that pile interval of 0.5~1.0m was appropriate in the case of high hillslope gradients and 0.7~2.0m in the case of low hillslope gradients of soil slope, and Pile interval of 0.5~1.3m in the case of high hillslope gradients and 0.7~2.0m in the case of low hillslope gradients of weathered rock slope. Recommended pile length was around 4m for pile 1, 2 and 3, and nearly 3m for pile 4 and 5.

  • PDF