• 제목/요약/키워드: heavy snow

검색결과 209건 처리시간 0.024초

Road Area Snowfall Intensity Detection from CCD Imagery (CCD 영상을 이용한 도로 강설강도 탐지)

  • Youn, Jun Hee;Kim, Gi Hong;Kim, Tae Hoon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • 제31권1호
    • /
    • pp.89-97
    • /
    • 2013
  • Recently, economic and social damages are globally increased due to the heavy snowfall caused by global warming. To reduce the damages of sudden regional heavy snow in roads, suitable countermeasures should be established based on the accurate detection of snowfall intensity for each roadway segment. In this paper, we deal with snowfall intensity detecting algorithm in the road area from CCD Imagery. First, we determine the MLZ (MotionLess Zone), which does not contain lane markings and moving cars, in the image space. Next, snow streaks trespassing the MLZ are extracted with Canny operator and proposed algorithm. Also, the concept of SII (Snow Intensity Index), which is the number of snow streaks during one minute in the MLZ, is defined. Finally, the effectiveness of proposed algorithm is proved by visually comparing the imagery and SII value obtained during 69 minutes. In consequence, we figured out that the integration of SII is significantly related to an actual amount of snowfall.

Variations of Soil Temperatures in Winter and Spring at a High Elevation Area (Boulder, Colorado)

  • Lee, Jin-Yong;Lim, Hyoun Soo;Yoon, Ho Il;Kim, Poongsung
    • Journal of Soil and Groundwater Environment
    • /
    • 제20권5호
    • /
    • pp.16-25
    • /
    • 2015
  • The City of Boulder is located at an average elevation of 1,655 m (5,430 feet), the foothills of the Rocky Mountains in Colorado. Its daily air temperature is much varying and snow is very frequent and heavy even in spring. This paper examines characteristics of shallow (surface and depth = 10 cm) soil temperatures measured from January to May 2015 in the high elevation city Boulder, Colorado. The surface soil temperature quickly responded to the air temperature with the strongest periodicity of 1 day while the subsurface soil temperatures showed a less correlation and delayed response with that. The short-time Fourier of the soil temperatures uncovered their very low frequencies characteristics in heavy snow days while it revealed high frequencies of their variations in warm spring season. The daily minimum air temperature exhibited high cross-correlations with the soil temperatures without lags unlike the maximum air temperature, which is derived from its higher and longer auto-correlation and stronger spectrums of low frequencies than the maximum air temperature. The snow depth showed an inverse relationship with the soil temperature variations due to snow's low thermal conductivity and high albedo. Multiple regression for the soil temperatures using the air temperature and snow depth presented its predicting possibility of them even though the multiple r2 of the regression is not that much satisfactory (r2 = 0.35-0.64).

Categorical Prediction and Improvement Plan of Snow Damage Estimation using Random Forest (랜덤포레스트를 이용한 대설피해액에 대한 범주형 예측 및 개선방안 검토)

  • Lee, Hyeong Joo;Chung, Gunhui
    • Journal of Wetlands Research
    • /
    • 제21권2호
    • /
    • pp.157-162
    • /
    • 2019
  • Recently, the occurrence of unusual heavy snow and cold are increasing due to the unusual global climate change. In particular, the temperature dropped to minus 69 degrees Celsius in the United States on January 8, 2018. In Korea, on February 17, 2014, the auditorium building in Gyeongju Mauna Resort was collapsed due to the heavy snowfall. Because of the tragic accident many studies on the reduction of snow damage is being conducted, but it is difficult to predict the exact damage due to the lack of historical damage data, and uncertainty of meteorological data due to the long distance between the damaged area and the observatory. Therefore, in this study, available data were collected from factors that are thought to be corresponding to snow damage, and the amount of snow damage was estimated categorically using a random forest. At present, the prediction accuracy was not sufficient due to lack of historical damage data and changes of the design code for green houses. However, if accurate weather data are obtained in the affected areas. the accuracy of estimates would increase enough for being used for be the degree preparedness of disaster management.

A Case Analysis Study on the Development of Snow Removal Equipment Using Smart Mobility (스마트 모빌리티를 적용한 제설장비 개발을 위한 사례분석 연구)

  • Heejae Kim;Geunyoung Kim
    • Journal of the Society of Disaster Information
    • /
    • 제20권1호
    • /
    • pp.138-146
    • /
    • 2024
  • Purpose: The purpose of this study is to find cases of using information and communication technology and smart mobility technology in snow removal vehicles and equipment for rapid and efficient road snow removal in the event of a snowstorm, and to find ways to utilize them. Method: Cases of domestic and overseas snow removal methods are investigated, and snow removal operation methods incorporating new technologies are presented. Result: Most of the operation of snow removal equipment in Korea uses GPS, CCTV, and road traffic information systems, and in the case of overseas, road weather information systems and road snow removal monitoring systems are used. It is expected that snow removal technology using autonomous snow removal vehicles, which are smart mobility, will be developed in the future. Conclusion: The results of this study can contribute to the policy of using snow removal equipment and snow removal vehicles of local governments and related organizations.

Projection of Future Snowfall and Assessment of Heavy Snowfall Vulnerable Area Using RCP Climate Change Scenarios (RCP 기후변화 시나리오에 따른 미래 강설량 예측 및 폭설 취약지역 평가)

  • Ahn, So Ra;Lee, Jun Woo;Kim, Seong Joon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • 제35권3호
    • /
    • pp.545-556
    • /
    • 2015
  • This study is to project the future snowfall and to assess heavy snowfall vulnerable area in South Korea using ground measured snowfall data and RCP climate change scenarios. To identify the present spatio-temporal heavy snowfall distribution pattern of South Korea, the 40 years (1971~2010) snowfall data from 92 weather stations were used. The heavy snowfall days above 20 cm and areas has increased especially since 2000. The future snowfall was projected by HadGEM3-RA RCP 4.5 and 8.5 scenarios using the bias-corrected temperature and snow-water equivalent precipitation of each weather station. The maximum snowfall in baseline period (1984~2013) was 122 cm and the future maximum snow depth was projected 186.1 cm, 172.5 mm and 172.5 cm in 2020s (2011~2040), 2050s (2041~2070) and 2080s (2071~2099) for RCP 4.5 scenario, and 254.4 cm, 161.6 cm and 194.8 cm for RCP 8.5 scenario respectively. To analyze the future heavy snowfall vulnerable area, the present snow load design criteria for greenhouse (cm), cattleshed ($kg/m^2$), and building structure ($kN/m^2$) of each administrative district was applied. The 3 facilities located in present heavy snowfall areas were about two times vulnerable in the future and the areas were also extended.

Mapping Technique for Heavy Snowfall Distribution Using Terra MODIS Images and Ground Measured Snowfall Data (Terra MODIS 영상과 지상 적설심 자료를 이용한 적설분포도 구축기법 연구)

  • Kim, Saet-Byul;Shin, Hyung-Jin;Lee, Ji-Wan;Yu, Young-Seok;Kim, Seong-Joon
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • 제14권4호
    • /
    • pp.33-43
    • /
    • 2011
  • This study is to make snowfall distribution map for the 4 heavy snowfall events of January 2001, March of 2004, December of 2005 and January of 2010, and compare the results for three cases of construction methods. The cases are to generate the map by applying IDW(Inverse Distance Weighting) interpolation to 76 ground measured snowfall point data (Snow Depth Map; SDM), mask out the SDM with the MODIS snow cover area (MODIS SCA) of Terra MODIS (MODerate resolution Imaging Spectroradiometer) (SDM+MODIS SCA; SDM_M), and consider the snowdepth lapse rate of snowfall by elevation (Digital Elevation Model; DEM) to the second case (SDM_M+DEM; SDM_MD). By applying the MODIS SCA, the SCA of 4 events was 62.9%, 44.1%, 52.0%, and 69.0% for the area of South Korea. For the average snow depth, the SDM_M decreased 0.9cm, 1.9cm, 0.8cm, and 1.5cm compared to SDM and the SDM_MD increased 1.3cm, 0.9cm, 0.4cm, and 1.2cm respectively.

A method for Assessment of landslide potentialities using GIS (GIS를 이용한 산사태 발생잠재가능성 평가 기법)

  • Yang In-Tae;Chun Ki-Sun;Lee Sang-Yun;Lee In-Yeop
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 한국측량학회 2006년도 춘계학술발표회 논문집
    • /
    • pp.313-318
    • /
    • 2006
  • The main cause of natural disaster in Korea is meteorological phenomenon, such as typhoon, heavy rain, storm, rainstorm, heavy snow, hailstorm, overflowing of sea and so on(including thunderstroke, blast, snow damage, freezing and earthquake), and among those disasters, heavy rain takes place most often, and it occupies 80% of total disaster Especially, disaster related to slope collapse (landslide, collapse of retaining wall, burying ect.) takes place every year due to meteorological cause such as localized heavy rain, which is getting stronger. (National Institute for Prevention Disaster, 2002, Meteorological Administration) Accordingly, it is necessary to analyze the features of slope collapse related to natural disaster in Korea, and also to make up counterplan to prevent disaster. This paper will try to analyze potential areas which are susceptible to landslide regarding factors inducing landslide and heavy rain, and to evaluate the potentiality of landslide regarding local particularity of rainfall, furthermore to provide essential information for development of community such as preventing damages from landslide, construction Industry, and effective use of land.

  • PDF

Wind tunnel tests and CFD simulations for snow redistribution on 3D stepped flat roofs

  • Yu, Zhixiang;Zhu, Fu;Cao, Ruizhou;Chen, Xiaoxiao;Zhao, Lei;Zhao, Shichun
    • Wind and Structures
    • /
    • 제28권1호
    • /
    • pp.31-47
    • /
    • 2019
  • The accurate prediction of snow distributions under the wind action on roofs plays an important role in designing structures in civil engineering in regions with heavy snowfall. Affected by some factors such as building shapes, sizes and layouts, the snow drifting on roofs shows more three-dimensional characteristics. Thus, the research on three-dimensional snow distribution is needed. Firstly, four groups of stepped flat roofs are designed, of which the width-height ratio is 3, 4, 5 and 6. Silica sand with average radius of 0.1 mm is used to model the snow particles and then the wind tunnel test of snow drifting on stepped flat roofs is carried out. 3D scanning is used to obtain the snow distribution after the test is finished and the mean mass transport rate is calculated. Next, the wind velocity and duration is determined for numerical simulations based on similarity criteria. The adaptive-mesh method based on radial basis function (RBF) interpolation is used to simulate the dynamic change of snow phase boundary on lower roofs and then a time-marching analysis of steady snow drifting is conducted. The overall trend of numerical results are generally consistent with the wind tunnel tests and field measurements, which validate the accuracy of the numerical simulation. The combination between the wind tunnel test and CFD simulation for three-dimensional typical roofs can provide certain reference to the prediction of the distribution of snow loads on typical roofs.

A Study on the Safety Frame Interval of Pipe Houses in Kyungpook Region (경북지방 파이프하우스의 안전골조간격에 관한 연구)

  • 이현우;이석건
    • Journal of Bio-Environment Control
    • /
    • 제4권2호
    • /
    • pp.195-202
    • /
    • 1995
  • As the pipe houses were constructed by imitation and routine without a structural design by now, they were often destructed by a strong wind or a heavy snowfall. The purpose of this study was to provide the basic data for the safety structural design of the pipe houses in Kyungpook region to prevent meteorological disaster. It was shown that the change of frame interval according to the safety factor under the wind load was similar that under the snow load. But the safety frame interval under the snow load was approximately 0.5-0.6m greater than that under the wind load for equal safety factor. Therefore, it seemed that the maximum safety frame interval was to be decided by the snow load. The frame of the pipe houses in Seungju region was structurally stable under the design snow load in recurrence intervals of 8-15years, but was unstable in Kolyong region.

  • PDF