• Title/Summary/Keyword: heavy metal stabilization

Search Result 123, Processing Time 0.016 seconds

Efficiency of Poultry Manure Biochar for Stabilization of Metals in Contaminated Soil (계분 바이오차를 이용한 토양 중금속 안정화 효율 평가)

  • Lim, Jung Eun;Lee, Sang Soo;Ok, Yong Sik
    • Journal of Applied Biological Chemistry
    • /
    • v.58 no.1
    • /
    • pp.39-50
    • /
    • 2015
  • Stabilization of heavy metals such as Pb, Cd, Zn, and Cu was evaluated in contaminated soil treated with poultry manure (PM) as well as its biochars pyrolyzed at $300^{\circ}C$ (PBC300) and $700^{\circ}C$ (PBC700) at the application rates of 2.5, 5.0, and 10.0 wt% along with the control, prior to 21-days incubation. After incubation, soil pH was increased from 6.94 (control) to 7.51, 7.24, and 7.88 in soils treated with PM 10 wt%, PBC300 10 wt%, and PBC700 10 wt% treatments, respectively, mainly due to alkalinity of treatments. In the soil treated with PM, the concentrations of the toxicity characteristic leaching procedure (TCLP)-extractable Pb, Cd, Zn, and Cu were increased by up to 408, 77, 24, and 955%, respectively, compared to the control. These increases may possibly be associated with an increased dissolved organic carbon concentration by the PM addition. However, in the soil treated with PBC700, TCLP-extractable Pb, Cd, Zn, and Cu concentrations were reduced by up to 23, 38, 52, and 36%, respectively, compared to the control. Thermodynamic modelling using the visual MINTEQ was done to predict the precipitations of $Pb(OH)_2$, $Cu(OH)_2$ and P-containing minerals, such as chloropyromorphite [$Pb_5(PO_4)_3Cl$] and hydroxypyromorphite [$Pb_5(PO_4)_3OH$], in the PBC700 10 wt% treated soil. The SEM-elemental dot mapping analysis further confirmed the presence of Pb-phosphate species via dot mapping of PBC700 treated soil. These results indicate that the reduction of Pb concentration in the PBC700 treated soil is related to the formations of chloropyromorphite and hydroxypyromorphite which have very low solubility.

Structure and chemical durability of borosilicate glass-ceramics containing EAF dust (EAF dust가 포함된 붕규산염계 결정화 유리의 구조 및 화학적 내구성)

  • Ahn, Y.S.;Kang, S.G.
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.17 no.2
    • /
    • pp.82-89
    • /
    • 2007
  • Glass-ceramics were fabricated by heat-treating a glass at $700^{\circ}C$/10hr which was obtained by melting a glass frit mixed with $40{\sim}80 wt%$ EAF dust at $1300^{\circ}C$/1hr. Dependence of crystal phase and bonding state change upon a compositional change and heat treatment condition were studied and the results was connected to the toxic characterization leaching procedure (TCLP) test data to investigate a chemical durability of the specimens. Increasing dust in a glass shifted the peak around $1000cm^{-1}$ to the lower frequency which was composed of two vibration peaks for the nonbridging oxygen at $960cm^{-1}$ and the bridging oxygen at $1050{\sim}1060cm^{-1}$. Also, the $B_2O_3$ structure of boroxol ring changed to a tetrhedral-, trigonal- and di-borate with dust addition. The Fe-O peaks in the glass-ceramics were observed which is consitent with XRD results of spinel formation. The surface of glass after TCLP test was severely cracked while there was no cracks on a glass-ceramics after TCLP test so the chemical durability of the glass-ceramics is superior than that of glass. The leaching concentration of Fe for the glass-ceramics containing EAF dust 80 wt% is 1/15 times lower than that of glass. The Zn leaching concentration fur the glass-ceramics containing dust < 70 wt% was higher than that of glass but its trend was reversed for the specimen of dust content > 80 wt% which could be concluded as correlated with occurrence of willemite phase.

Study on Reutilization with Aerobic Microbes of Organic Food Waste Leachates (호기성 미생물을 이용한 음폐수의 처리 및 자원화에 관한 연구)

  • Kang, Bo-Mi;Hwang, Hyeon-Uk;Kim, Ji-Hoon;Yang, Yong-Woon;Kim, Young-Ju
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.1
    • /
    • pp.54-59
    • /
    • 2011
  • This test established the bioavailability and sample input by mixing the maintaining the microbial machine parts and food waste leachates in weight of 2:1 as advanced experiment, maintaining the constant temperature, agitating and observing its weight and property change for 60 hours. And, I injected daily the established microbial machine parts and food waste leachates rate, maintained the temperature in the reactor with $55{\sim}65^{\circ}C$, and agitated with constant speed. I studied the recycling possibility of food waste leachates by extracting the sample after 24 hours, verifying its characteristics, and repeating the food waste leachates input and sample extraction for about 40 days. Considering all about the results of this study, I saw that 87.32% of food waste leachates was reduced, and the solid of bluebug or food included in the food waste leachates was decomposed within 24 hrs. pH for 43 days after 9 days of stabilization period was maintained from 3.7~3.9 and the ignition loss from 88.67~87.3%, and the quantity of organic matter from 77.6~80.88%. With the similar result daily maintained, it is considered to progress more the minimization by inputting the future food waste leachates. C/N rate satisfies the less than 25 that is the composting basis within 8 days, maintaining between 13~15, with 2% of salt not exceeded, it is able to recycle as the compost of food waste leachates as based on the composting with no extracted heavy metal content.