• 제목/요약/키워드: heavy metal contaminated soil

Search Result 379, Processing Time 0.026 seconds

Study for Phytostabilization using Soil Amendment and Aster koraiensis Nakai in Heavy Metal Contaminated Soil of Abandoned Metal Mine

  • Jung, Mun-Ho;Lee, Sang-Hwan;Ji, Won-Hyun;Park, Mi-Jeong;Jung, Kang-Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.5
    • /
    • pp.627-634
    • /
    • 2016
  • The objectives of this study were to select optimal soil amendments through analysis of heavy metal availability in soil and uptake to Aster koraiensis Nakai for forest rehabilitation of heavy metal contaminated soil of abandoned metal mine. A. koraiensis was cultivated for 6 months at contaminated soil with several soil treatments (bottom ash 1 and 2%, fly ash 1 and 2%, waste lime+oyster 1 and 2%, Acid mine drainage sludge (AMDS) 10 and 20%, compost 3.4%, non-contaminated natural forest soil, and control). The analysis results of heavy metal concentrations in the soil by Mehlich-3 mehthod, growth and heavy metal concentrations of A. koraiensis showed that waste oyster+lime 1% and compost were more effective than the other amendments for phytostabilization. However, it is needed comprehensive review of factors such as on-site condition, slope covering to reduce soil erosion and vegetation introduction from surround forest for revegetation to apply forest rehabilitation.

A Study on Remediation of Heavy Metal Contaminated Soil using a Soil Electrolysis Apparatus with Spiral Paddle (나선형패들이 장착된 토양전기분해장치를 이용한 중금속 오염토양 정화에 관한 연구)

  • Lee, Jun-Hee;Choi, Young-Ik;Jung, Jin-Hee
    • Journal of Environmental Science International
    • /
    • v.26 no.6
    • /
    • pp.797-802
    • /
    • 2017
  • This study aimed to remove organic matter and heavy metals that could affect the recycling of soils contaminated by heavy metals, by means of electrolysis, carried out simultaneously with the leaching of the soil. To ensure better experimental equipment, a soil electrolysis apparatus, equipped with spiral paddles, was used to agitate the heavy-metal-contaminated soil effectively. The heavy-metal-contaminated soil was electrolyzed by varying the voltage to 5 V(Condition 1), 15 V(Condition 2), and 20 V(Condition 3), under the optimal operating conditions of the electrolysis apparatus, as determined through previous studies. The results showed that the pH of the electrolyte solution and the heavy-metal-contaminated soil, after electrolysis, tended to decrease with an increase in voltage. The highest removal efficiencies of TOC and $COD_{Cr}$ were 18.8% and 29.1%, 38.8% and 4.2%, and 33.3% and 50.0%, under conditions 1, 2 and 3, respectively. Heavy metals such as Cd and As were not detected in this experiment. The removal efficiencies of Cu, Pb and Cr were 4.7%, 8.3% and 2.1%, respectively, under Condition 1, while they were 42.9%, 15.2% and 22.1%, respectively, under Condition 2, and 4.7%, 23.0%, and 24.9%, respectively, under Condition 3. These results suggest that varying the voltage with the soil electrolysis apparatus for removing contaminants for the recycling of heavy-metal-contaminated soil allows the selective removal of contaminants. Therefore, the results of this study can be valuable as basic data for future studies on soil remediation.

Comparison between Siderophores Production by Fungi Isolated from Heavy Metals Polluted and Rhizosphere Soils

  • Hussein, Khalid A.;Joo, Jin Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.5
    • /
    • pp.798-804
    • /
    • 2012
  • Although siderophores are induced primarily in response to iron deficiency, soil and other ecological factors can affect on this process. This study was to evaluate the production of siderophores by different fungal species isolated from heavy metal contaminated and uncontaminated soils. More than thirty fungal strains were isolated from heavy metal contaminated and rhizosphere uncontaminated soils. Chrome azurol sulfonate (CAS) was used for both quantitative and qualitative evaluation of siderophores production. No significant correlations were observed between the tested variables such as ultraviolet (UV) irradiation method and CAS-agar plate and heavy metal concentration in both soils. The production of siderophores in rhizosphere fungi was higher than those isolated from the contaminated soil; however, the difference was not significant. The siderophore production (%) by fungi isolated from heavy metal contaminated soil using UV irradiation method was positively correlated with the qualitative values using CAS-plate method (P<0.05). Pearson correlation test indicated a positive correlation between the quantitative and qualitative methods of detection for fungi isolated from rhizosphere and also those isolated from heavy metal contaminated soil.

Effects of Heavy Metal and pH on Bacterial Growth Isolated from the Contaminated Smelter Soil (제련소 인근 토양에서 분리한 박테리아 생장에 미치는 중금속 및 pH 영향)

  • Keum, Mi-Jung;Yoon, Min-Ho;Nam, In-Hyun
    • Journal of Soil and Groundwater Environment
    • /
    • v.20 no.4
    • /
    • pp.113-121
    • /
    • 2015
  • The contaminated soil at abandoned smelter areas present challenge for remediation, as the degraded materials are typically deficient in nutrients, and rich in toxic heavy metals and metalloids. Bioremediation technique is to isolate new strains of microorganisms and develop successful protocols for reducing metal toxicity with heavy metal tolerant species. The present study collected metal contaminated soil and characterized for pH and EC values, and heavy metal contents. The pH value was 5.80, representing slightly acidic soil, and EC value was 13.47 mS/m. ICP-AES analytical results showed that the collected soil samples were highly contaminated with various heavy metals and metalloids such as lead (183.0 mg/kg), copper (98.6 mg/kg), zinc (91.6 mg/kg), and arsenic (48.1 mg/kg), respectively. In this study, a bacterial strain, Bacillus cereus KM-15, capable of adsorbing the heavy metals was isolated from the contaminated soils by selective enrichment and characterized to apply for the bioremediation. The effects of heavy metal on the growth of the Bacillus cereus KM-15 was determined in liquid cultures. The results showed that 100 mg/L arsenic, lead, and zinc did not affect the growth of KM-15, while the bacterial growth was strongly inhibited by copper at the same concentration. Further, the ability of the bacteria to adsorb heavy metals was evaluated.

A Study for Remediation of Heavy Metal Contaminated Soil Using Electrokinetics with Swappable Electrode (전극변환 동전기를 이용한 중금속 오염토양 처리에 관한 연구)

  • Choi, Heechol;Lee, Tae-Jin
    • Journal of Soil and Groundwater Environment
    • /
    • v.17 no.5
    • /
    • pp.75-81
    • /
    • 2012
  • In this study, remediation of heavy metal contaminated soil was attempted by the electrokinetic process equipped with fixed or swappable electrode. Copper was more effectively removed with EDTA than citric acid. Zinc was much more removed than copper with both detergents. When electrokinetic with fixed electrode and detergents were applied to the contaminated soil, copper was removed about 28.52%~35.25% and zinc was removed about 63.44%~71.48%. When electrokinetics with swappable electrode and detergents were applied to the contaminated soil, the pseudo-first order reaction constants was higher about 16~50% than with fixed electrode in the case of zinc. It is conclusive that electrokinetics with swappable electrode could be an effective method for the remediation of heavy metal contaminated soil.

Effect of Water-Thoroughly-Rinsing in the Artificially Metal-Contaminated Soil Preparation on Final Soil Metal Concentrations (인위적 중금속 오염 토양 제조과정에서 최종 세척과정이 중금속 토양 농도에 미치는 영향 연구)

  • Hur, Jeong-Hyun;Jeong, Seung-Woo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.9
    • /
    • pp.670-676
    • /
    • 2011
  • Artificially metal-contaminated soils have been widely used for lab-scale soil washing and soil toxicity experiments. The artificial soil contamination methods consist of 1) first equilibrating soils with heavy metal solution, 2) filtrating or centrifuging soils from the mixture and 3) finally drying the soils. However, some of those artificially contaminated soil experiments have not clearly shown that the soils were thoroughly rinsed with water prior to conducting experiments. This study investigated the amount of heavy metal release from the artificially metal-contaminated soil by pre-water-rinsing. Three different artificially metal-contaminated soil preparation methods were first evaluated with Cd and Pb concentrations of soil. Then, this study investigated the effect of pre-water-rinsing on the Cd and Pb concentration of the artificially contaminated soil. Heavy metal concentrations of the soil produced by equilibrating and drying the metal solution-soil were significantly reduced by pre-water-rinsing. The results of the study implied that experimental results would be significantly distorted when the artificially heavy metal-contaminated soils were not thoroughly water-rinsed prior to conducting experiments. Therefore, the initial heavy metal concentration of the artificially contaminated soil should be determined after thoroughly rinsing the soil that was previously obtained through the adsorption and dry stages.

Phytoremediation of Heavy-Metal-Contaminated Soil in a Reclaimed Dredging Area Using Alnus Species

  • Lee, Deok-Beom;Nam, Woong;Kwak, Young-Se;Cho, Nam-Hoon;Lee, Sang-Suk
    • Journal of Ecology and Environment
    • /
    • v.32 no.4
    • /
    • pp.267-275
    • /
    • 2009
  • To investigate the possible applications of plants to remediate heavy-metal-contaminated soil, a pilot experiment was performed for four years in a reclaimed dredging area using two Alnus species, i.e., Alnus firma and Alnus hirsuta. In a comparison of phytomass of the two species at two different planting densities, the phytomass of Alnus planted at low density was twice as high as that of Alnus planted at high density after four years. The Alnus species showed active acclimation to the heavy-metal-contaminated soil in a reclaimed dredging area. A. hirsuta showed greater accumulation of phytomass than A. firma, indicating that it is the better candidate for the phytoremediation of heavy-metal-contaminated soils. In the pilot system, Alnus plants took metals up from the soil in the following order; Pb > Zn > Cu > Cr > As > Cd. Uptake rates of heavy metals per individual phytomass was higher for Alnus spp. planted at low density than those planted at high density in the pilot system. Low plant density resulted in higher heavy metal uptake per plant, but the total heavy metal concentration was not different for plants planted at low and high density, suggesting that the plant density effect might not be important with regard to total uptake by plants. The quantity of leached heavy metals below ground was far in excess of that taken up by plants, indicating that an alternative measurement is required for the removal of heavy metals that have leached into ground water and deeper soil. We conclude that Alnus species are potential candidates for phytoremediation of heavy-metal- contaminated surface soil in a reclaimed dredging area.

A Leaching Characteristics on Lime Stabilization of Heavy Metal Contaminated Soil in a Waste Mine Area (폐 광산 지역 중금속 오염 토양의 석회안정화 적용 시 용출특성)

  • Oa, Seong-Wook
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.6
    • /
    • pp.862-867
    • /
    • 2011
  • Pozzolanic-based stabilization/solidification (S/S) is an effective and economic remediation technology to immobilize heavy metals in contaminated soils. In this study, quick lime (CaO) was used to immobilize cadmium and zinc present in waste mine contaminated clayey sand soils. Addition of 5% quicklime to the contaminated soils effectively reduced heavy metal leachability after 2 bed volume operation below the drinking water regulatory limits. Lime addition was revealed to increase the immobilization for all heavy metals in tested pH ranges, so it could be an optimal choice for short-term remediation of heavy metal contaminated soil. The mass balances for these column tests show metal reduction of 92% for Cd and 87% for Zn of total resolved mass in case of 5% lime application.

Review for Remediation Techniques of Contaminated Soil with Heavy Metals (중금속 오염토양의 복원기술에 대한 고찰)

  • Jeon, Choong
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.21 no.3
    • /
    • pp.53-63
    • /
    • 2013
  • It is well known that problem for contaminated soil with heavy metals is mainly produced from agricultural land around abandoned metal mine and the cost to solve them is much higher than those of water and air pollution in addition, it takes much more time to clarify the contaminated soil. Until now, economical and practical many techniques to remediate contaminated soils with heavy metals have been developed and proposed. Therefore, in this study, characteristic, merit and weakness for various techniques which are developing and commercializing recently in domestic/foreign country will be reviewed.

A Study on Isolation of Mixed Heavy Metal-Contaminated Soil and the Waste in Railroad Workshop (철도 정비창의 폐기물과 혼합된 중금속 오염토 분리에 관한 연구)

  • Son, Woohwa;Lee, Seungho
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.12
    • /
    • pp.59-66
    • /
    • 2012
  • In this study, it was sampling from heavy metal-contaminated soil with the waste in railroad workshop. And, the pollution concentration and analysis of particle-size distribution were conducted to design efficient purification process that it was aimed at high contaminated area, low contaminated area and samples containing waste foundry sand. But, it was the other signs of general soil contamination, as construction waste of waste concrete and waste wood, waste foundry sand, incinerator ash, etc is overall buried on the grounds. Thus, the common heavy metal purification technology has not decreased the pollution. However, heavy-metal contamination was reduced by magnetic separation utilizing the magnetic component of the mixed waste.