• 제목/요약/키워드: heavy ion cancer therapy

검색결과 17건 처리시간 0.019초

몬테카를로 시뮬레이션을 이용한 중입자 치료실의 선량분포 추정 (Estimation of Dose Distribution on Carbon Ion Therapy Facility using Monte Carlo Simulation)

  • 송용근;허승욱;조규석;최상현;한무재;박지군
    • 한국방사선학회논문지
    • /
    • 제11권6호
    • /
    • pp.437-442
    • /
    • 2017
  • 꿈의 암치료기라고 불리는 중입자 치료는 환자의 암세포에 입사하여 암세포만을 사멸하고 사라지는데 이때 중성자 및 감마선이 발생되어 치료실 내 영상장비, 그 밖의 전자장비에 영향을 미치게 된다. 중입자 치료시설을 구축하기 위해서는 약 2,000억 원 가량의 예산이 필요하며 구축기간도 5년 이상 소요된다. 따라서 구축 전 몬테카를로 시뮬레이션을 이용하여 치료실 내 선량 분포에 대해 관찰하여 적절한 대비를 하는 것이 중요하다. 본 연구에서는 몬테카를로 시뮬레이션 툴인 FLUKA를 이용하여 중입자 치료 시 치료실 내 선량분포에 대해 알아보았으며 1분 치료 시 치료실 내에는 약 0.1 mSv에서 2 pSv 정도의 영향이 있을 것으로 파악되었다.

첨단 암 치료로서 중입자치료의 임상적 유용성에 대한 고찰 (Literature Review of Clinical Usefulness of Heavy Ion Particle as an New Advanced Cancer Therapy)

  • 최상규
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제42권6호
    • /
    • pp.413-422
    • /
    • 2019
  • Heavy ion particle, represented carbon ion, radiotherapy is currently most advanced radiation therapy technique. Conventional radiation therapy has made remarkable changes over a relatively short period of time and leading various developments such as intensity modulated radiation therapy, 4D radiation therapy, image guided radiation therapy, and high precisional therapy. However, the biological and physical superiority of particle radiation, represented by Bragg peak, can give the maximum dose to tumor and minimal dose to surrounding normal tissues in the treatment of cancers in various areas surrounded by radiation-sensitive normal tissues. However, despite these advantages, there are some limitations and factors to consider. First, there is not enough evidence, such as large-scale randomized, prospective phase III trials, for the clinical application. Secondly, additional studies are needed to establish a very limited number of treatment facilities, uncertainty about the demand for heavy particle treatment, parallel with convetional radiotherapy or indications. In addition, Bragg peak of the heavy particles can greatly reduce the dose to the normal tissues front and behind the tumor compared to the photon or protons. High precision and accuracy are needed for treatment planning and treatment, especially for lungs or livers with large respiratory movements. Currently, the introduction of the heavy particle therapy device is in progress, and therefore, it is expected that more research will be active.

Profile and Dose Distribution for Therapeutic Heavy Ion Beams

  • Sasaki, Hitomi;Komori, Masataka;Kohno, Toshiyuki;Kanai, Tatsuaki;Hirai, Masaaki;Urakabe, Eriko;Nishio, Teiji
    • 한국의학물리학회:학술대회논문집
    • /
    • 한국의학물리학회 2002년도 Proceedings
    • /
    • pp.211-213
    • /
    • 2002
  • The purpose of this work is acquiring some parameters of therapeutic heavy ion beams after penetrating a thick target. The experiments were performed using a pencil-like $\^$12/C beam of about 3 mm in diameter from NIRS-HIMAC, and the data were taken at several points of the target thickness for $\^$12/C beam of 290 MeV/u and 400 MeV/u. By the simultaneous measurements using some detectors, the atomic number of each fragment particle was identified, and the beam profile, the dose distribution and the LET spectrum for each element were derived.

  • PDF

Development of Microvolume LET Counter for Therapeutic Heavy Ion Beam

  • Hirai, Masaaki;Kanai, Tatsuaki
    • 한국의학물리학회:학술대회논문집
    • /
    • 한국의학물리학회 2002년도 Proceedings
    • /
    • pp.231-232
    • /
    • 2002
  • We have been developing microvolume LET counter in order to measure the three-dimensional LET distribution of the therapeutic heavy ion radiation volumes in the water phantom. With help of the technique of cathode induced carhge readout, this detector has a rectangular (box-shape) sensitive volume of which size is about 1 mm$^2$ and 2mm (depth).

  • PDF

Review of Shielding Evaluation Methodology for Facilities Using kV Energy Radiation Generating Devices Based on the NCRP-49 Report

  • Na Hye Kwon;Hye Sung Park;Taehwan Kim;Sang Rok Kim;Kum Bae Kim;Jin Sung Kim;Sang Hyoun Choi;Dong Wook Kim
    • 한국의학물리학회지:의학물리
    • /
    • 제33권4호
    • /
    • pp.53-62
    • /
    • 2022
  • In this study, we have investigated the shielding evaluation methodology for facilities using kV energy generators. We have collected and analysis of safety evaluation criteria and methodology for overseas facilities using radiation generators. And we investigated the current status of shielding evaluation of domestic industrial radiation generators. According to the statistical data from the Radiation Safety Information System, as of 2022, a total of 7,679 organizations are using radiation generating devices. Among them, 6,299 facilities use these devices for industrial purposes, which accounts for a considerable portion of radiation. The organizations that use these devices evaluate whether the exposure dose for workers and frequent visitors is suitable as per the limit regulated by the Nuclear Safety Act. Moreover, during this process, the safety shields are evaluated at the facilities that use the radiation generating devices. However, the facilities that use radiating devices having energy less than or equal to 6 MV for industrial purposes are still mostly evaluated and analyzed according to the National Council on Radiation Protection and Measurements 49 (NCRP 49) report published in 1976. We have investigated the technical standards of safety management, including the maximum permissible dose and parameters assessment criteria for facilities using radiation generating devices, based on the NCRP 49 and the American National Standards Institute/Health Physics Society N.43.3 reports, which are the representative reports related to radiation shielding management cases overseas.

Preliminary study for the development of radiation safety evaluation methodology for industrial kV-rated radiation generator facilities

  • Hye Sung Park ;Na Hye Kwon ;Sang Rok Kim ;Hwidong Yoo;Jin Sung Kim ;Sang Hyoun Choi;Dong Wook Kim
    • Nuclear Engineering and Technology
    • /
    • 제55권10호
    • /
    • pp.3854-3859
    • /
    • 2023
  • Background: This study aims to develop an evaluator that can quickly and accurately evaluate the shielding of low-energy industrial radiation generators. Methods: We used PyQt to develop a graphical user interface (GUI)-based program and employed the calculation methodology reported in the National Council on Radiation Protection and Measurements (NCRP)-49 for shielding calculations. We gathered the necessary factors for shielding evaluation using two libraries designed for Python, pandas and NumPy, and processed them into a database. We verified the effectiveness of the proposed program by comparing the results with those from safety reports of six domestic facilities. Results: After verifying the effectiveness of the program using the NCRP-49 example, we obtained an average error rate of 1.73%. When comparing the facility safety report and results obtained using the program, we found that the error rate was between 1.09% and 6.51%. However, facilities that did not use a defined shielding methodology were underestimated by 31.82% compared with the program (the final barrier thickness satisfied the shielding standard). Conclusion: The developed program provides a fast and accurate shielding evaluation that can assist personnel that work in radiation generator facilities and government officials in reviewing safety.

Review of the Existing Relative Biological Effectiveness Models for Carbon Ion Beam Therapy

  • Kim, Yejin;Kim, Jinsung;Cho, Seungryong
    • 한국의학물리학회지:의학물리
    • /
    • 제31권1호
    • /
    • pp.1-7
    • /
    • 2020
  • Hadron therapy, such as carbon and helium ions, is increasingly coming to the fore for the treatment of cancers. Such hadron therapy has several advantages over conventional radiotherapy using photons and electrons physically and clinically. These advantages are due to the different physical and biological characteristics of heavy ions including high linear energy transfer and Bragg peak, which lead to the reduced exit dose, lower normal tissue complication probability and the increased relative biological effectiveness (RBE). Despite the promising prospects on the carbon ion radiation therapy, it is in dispute with which bio-mathematical models to calculate the carbon ion RBE. The two most widely used models are local effect model and microdosimetric kinetic model, which are actively utilized in Europe and Japan respectively. Such selection on the RBE model is a crucial issue in that the dose prescription for planning differs according to the models. In this study, we aim to (i) introduce the concept of RBE, (ii) clarify the determinants of RBE, and (iii) compare the existing RBE models for carbon ion therapy.

Basics of particle therapy I: physics

  • Park, Seo-Hyun;Kang, Jin-Oh
    • Radiation Oncology Journal
    • /
    • 제29권3호
    • /
    • pp.135-146
    • /
    • 2011
  • With the advance of modern radiation therapy technique, radiation dose conformation and dose distribution have improved dramatically. However, the progress does not completely fulfi ll the goal of cancer treatment such as improved local control or survival. The discordances with the clinical results are from the biophysical nature of photon, which is the main source of radiation therapy in current field, with the lower linear energy transfer to the target. As part of a natural progression, there recently has been a resurgence of interest in particle therapy, specifically using heavy charged particles, because these kinds of radiations serve theoretical advantages in both biological and physical aspects. The Korean government is to set up a heavy charged particle facility in Korea Institute of Radiological & Medical Sciences. This review introduces some of the elementary physics of the various particles for the sake of Korean radiation oncologists' interest.

Evaluation of energy correction algorithm for signals of PET in heavy-ion cancer therapy device

  • Niu, Xiaoyang;Yan, Junwei;Wang, Xiaohui;Yang, Haibo;Ke, Lingyun;Chen, Jinda;Du, Chengming;Zhang, Xiuling;Zhao, Chengxin;Kong, Jie;Su, Hong
    • Nuclear Engineering and Technology
    • /
    • 제52권1호
    • /
    • pp.101-108
    • /
    • 2020
  • In order to solve the contradiction between requirements of high sampling rate for acquiring accurate energy information of pulses and large amount of data to be processed timely, the method with an algorithm to correct errors caused by reducing the sampling rate is normally used in front-end read-out system, which is conductive to extract accurate energy information from digitized waveform of pulse. The functions and effects of algorithms, which mainly include polynomial fitting with different fitting times, double exponential function fitting under different sampling modes, and integral area algorithm, are analyzed and evaluated, and some meaningful results is presented in this paper. The algorithm described in the paper has been used preliminarily in a prototype system of Positron Emission Tomography (PET) for heavy-ion cancer therapy facility.

Estimation of Nuclear Interaction for $^{11}C$ Cancer Therapy

  • Maruyama, Koichi;Kanazawa, Mitsutaka;Kitagawa, Atsushi;Suda, Mitsuru;Mizuno, Hideyuki;Iseki, Yasushi
    • 한국의학물리학회:학술대회논문집
    • /
    • 한국의학물리학회 2002년도 Proceedings
    • /
    • pp.199-201
    • /
    • 2002
  • Cancer therapy using high-energy $^{12}$ C ions is successfully under way at HIMAC, Japan. An alternative beam to $^{12}$ C is $^{11}$ C ions. The merit of $^{11}$ C over $^{12}$ C is its capability for monitoring spatial distribution of the irradiated $^{11}$ C by observing the $\beta$$^{+}$ decay with a good position resolution. One of the several problems to be solved before its use for therapy is the amount of nuclear interaction that deteriorates the dose concentration owing to the Bragg curve. Utilizing the dedicated secondary beam course for R&D studies at HIMAC, we measured the total energy loss of $^{11}$ C ions in a scintillator block that simulates the soft tissue in human bodies. In addition to the total absorption $^{11}$ C peak, non-negligible bump-shaped contribution is observed in the energy spectrum. The origin of the bump contribution can be nuclear interaction of the incident $^{11}$ C ions with hydrogen and carbon atoms. Further studies to reduce the ambiguity in dose distribution are mentioned.

  • PDF