• Title/Summary/Keyword: heating technology

Search Result 2,978, Processing Time 0.035 seconds

A Development of the Performance Analysis Program Package of the Automatic Temperature Control System for Heating (난방용 자동온도조절기 성능분석용 프로그램 및 패키지 개발)

  • Kim, Yong-Ki;Woo, Nam-Sub;Lee, Tae-Won;Ahn, Byung-Cheon
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.1209-1214
    • /
    • 2009
  • Various automatic temperature control systems have been used widely in Korea for the conservation of heating energy and the enhancement of thermal comfort in residential buildings. But the heating control performance for automatic temperature control systems extensively vary with the design and operational conditions of the heating system, the climate condition and others. It was introduced in this study a numerical calculation program package to analyze heating control characteristics of the automatic temperature control system. This package is able to analyze the room air temperature, return water temperature, supplied heating flux and flow rate, and so on. One the other hand, the simulation results were verified by comparing with the field test results.

  • PDF

A Comparison of Heating Control Characteristics by Temperature Sensing Methods for Thermostatic Valves with the Proportional Control Mode (비례제어식 자동온도조절기의 온도감지방식별 난방제어 특성 비교)

  • Kim, Yong-Ki;Lee, Tae-Won;Kang, Sung-Ju
    • Proceedings of the SAREK Conference
    • /
    • 2007.11a
    • /
    • pp.161-166
    • /
    • 2007
  • Various thermostatic valves have been used widely in Korea for conservation of heating energy and enhancement of thermal comfort in residential buildings. But heating control performances of thermostatic valves extensively vary with the design and operational conditions of the heating system, climate condition and others. An experimental method was carried out in this study to analyze heating control characteristics by temperature sensing methods of thermostatic valves for various parameters, such as supply temperatures and flow rate of hot water, the position of room thermostats and outdoor air temperatures. As a result, the heat flow rate per day of S-Valve($34^{\circ}C$-Type) of water temperature sensing method was liked that of C-Valve of indoor air temperature sensing method with stage 3.3 of room thermostat in case supply temperature of hot water was $45^{\circ}C$, flow rate was 1.3 L/min and outdoor air temperature was $7.8^{\circ}C$.

  • PDF

A Study on Establishment of the IoT-Based Remote Management System for District Heating Facilities (지역난방설비를 위한 IoT 기반 원격 관리 시스템 구축에 대한 연구)

  • Kim, Jun-hyeok;Lee, Sang-hak;Kim, Byung-min
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.42 no.3
    • /
    • pp.698-701
    • /
    • 2017
  • The district heating system supports currently 1.3 million of houses in South Korea, and it is composed of two main parts: provision and distribution. For the provision part, Korea District Heating Corporation supervises the system with proper devices and experts, whereas for the distribution parts, there is no main supervision system and it depends highly on experts although it is very difficult to find the proper experts. In this paper, we consider IoT based remote management system for district heating distribution to properly supervise heating distribution by experts and/or programs remotely.

Research on flow characteristics in supercritical water natural circulation: Influence of heating power distribution

  • Ma, Dongliang;Zhou, Tao;Feng, Xiang;Huang, Yanping
    • Nuclear Engineering and Technology
    • /
    • v.50 no.7
    • /
    • pp.1079-1087
    • /
    • 2018
  • There are many parameters that affect the natural circulation flow, such as height difference, heating power size, pipe diameter, system pressure and inlet temperature and so on. In general analysis the heating power is often regarded as a uniform distribution. The ANSYS-CFX numerical analysis software was used to analyze the flow heat transfer of supercritical water under different heating power distribution conditions. The distribution types of uniform, power increasing, power decreasing and sine function are investigated. Through the analysis, it can be concluded that different power distribution has a great influence on the flow of natural circulation if the total power of heating is constant. It was found that the peak flow of supercritical water natural circulation is maximal when the distribution of heating power is monotonically decreasing, minimal when it is monotonically increasing, and moderate at uniform or the sine type of heating. The simulation results further reveal the supercritical water under different heat transfer conditions on its flow characteristics. It can provide certain theory reference and system design for passive residual heat removal system about supercritical water.

The Effects of Heating on the Physicochemical and Functional Properties of Acid Whey Compared to Sweet Whey

  • Shon, Jin-Han;Lee, Sun-Hye;Lee, Fan-Zhu;Lee, Byung-Doo;Eun, Jong-Ban
    • Food Science and Biotechnology
    • /
    • v.16 no.5
    • /
    • pp.836-842
    • /
    • 2007
  • In this study, we investigated the effects of heating ($80^{\circ}C$, 30 min) on the physicochemical and functional attributes of acid (cottage) and sweet (Edam and Cheddar) whey powders. The water holding capacity (WHC) of the whey powders was not affected by heating or pH value. The heated Cheddar whey powder had a significantly lower (p<0.05) WHC than that of the other wheys. Heating detrimentally impacted the emulsifying and foaming properties, On the other hand, heating significantly enhanced the heat stabilities (HS) of all powders, This was best demonstrated at the acidic pH values of 3.0 and 4.5, where the HS increased by 57 and 53, 181 and 167, and 31 and 48%, for the cottage, Edam, and Cheddar, respectively. Overall, this data provides useful insights into the manufacture of pasteurization and retort-stable whey powders.

Design Capacity Evaluation of 2-stage Hot Water Heat Exchanger in Apartment Mechanical Rooms with District Heating System (지역난방 공동주택에 설치하는 급탕 2단 열교환기의 용량 적정성 평가에 관한 연구)

  • Chung, Kwang-Seop;Sa, Ki-Yong;Kim, Lae-Hyun;Lee, Hoon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.21 no.8
    • /
    • pp.456-461
    • /
    • 2009
  • Recently, an increasing interest in district heating system has emerged rapidly, In this paper, the physical measurements and data to be monitoring through the internet were carried out with regard to hot water heating energy consumption at the three apartment housings with district heating system in Sang-am district of Seoul, Korea, Measurements were made of the thermal factors such as the pressure of heating pipe, flow rates, hot water temperature and etc, The objective of this study is to compare the design capacity of reheat exchanger with that of preheat exchanger in order to evaluate for the number of plates of two exchangers to be distributed properly.

Evaluation of Natural Ventilation Performance using the Multi-Functional Floor Heating System (다기능온돌시스템을 이용한 자연환기성능 평가)

  • Cho, Dong-Woo;Yu, Ki-Hyung;Yu, Jung-Yeon;Jung, Hae-Kwon
    • Proceedings of the SAREK Conference
    • /
    • 2007.11a
    • /
    • pp.105-112
    • /
    • 2007
  • Recently developed raised floor heating system is not only capable of basic function to reduce noise between floors, but also is a multi-functional floor heating system enabling natural ventilation. The procedure of this system for natural ventilation is to import outdoor air through bottom space of the floor heating system, circulate indoor space and discharge it out of ceiling. In winter, powerless natural ventilation is possible with buoyancy effect caused by temperature difference between outdoor and indoor. And it also allows saving of energy by importing pre-heated air in bottom space of the floor heating system. To evaluate ventilation performance of this system, on-site measurement was conducted in 2 test laboratories, and the nominal air change rate was satisfied as 0.4$\sim$0.8 h-1 under the condition of outdoor temperature $5^{\circ}C{\sim}-5^{\circ}C$, which was evaluated as highly possible to be applied as a natural ventilation system in multi-family houses.

  • PDF

Tritium extraction in aluminum metal by heating method without melting

  • Kang, Ki Joon;Byun, Jaehoon;Kim, Hee Reyoung
    • Nuclear Engineering and Technology
    • /
    • v.54 no.2
    • /
    • pp.469-478
    • /
    • 2022
  • Tritium was extracted from tritium-contaminated aluminum samples by heating it in a high-temperature furnace at 200, 300, or 400 ℃ for 15 h. The extracted tritium was analyzed by using a liquid scintillation counter (LSC); the sample thicknesses were 0.4 and 2 mm. The differences in tritium extraction over time were also investigated by cutting aluminum stick samples into several pieces (1, 5, 10, and 15) with the same thickness, and subsequently heating them. The results revealed that there are most of the hydrated material based on tritium on the surface of aluminum. When the temperature was increased from 200 or 300 ℃-400 ℃, there are no large differences in the heating duration required for the radioactivity concentration to be lower than the MDA value. Additionally, at the same thickness, because the surface of aluminum is only contaminated to tritiated water, cutting the aluminum samples into several pieces (5, 10, and 15) did not have a substantial effect on the tritium extraction fraction at any of the applied heating temperatures (200, 300, or 400 ℃). The proportion of each tritium-release materials (aluminum hydrate based on tritium) were investigated via diverse analyses (LSC, XRD, and SEM-EDS).

The Effect of Supply Angle on Cooling and Heating Performances of Office Space (급기각도가 사무실 공간의 냉방 및 난방 성능에 미치는 영향)

  • Kim, Myo-Sun;Kim, Young-Il;Chung, Kwang-Seop
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.497-501
    • /
    • 2009
  • Effect of angle of supply air on cooling and heating performances of office space is studied by numerical simulation. For a constant air volume(CAV) air-conditioning system, air is supplied vertically($90^{\circ}$) and horizontally($10^{\circ}$). Due to buoyancy, the supply angle affects the performance of cooling and heating. In cooling, since the cold supply air tends to move downward due to its high density, horizontal supply angle is better for uniform temperature distribution. In heating, however, vertical supply angle is preferred for better mean and uniform temperature distribution.

  • PDF