• Title/Summary/Keyword: heating space

Search Result 675, Processing Time 0.022 seconds

An Experimental Study on the Optimal Conditions of Decomposition/Synthesis of Methanol for Heat Transport from Long Distance (장거리 열수송을 위한 메탄올 분해/합성 반응 최적화 조건의 실험적 연구)

  • Yoon, Seok-Mann;Moon, Seung-Hyun;Lee, Seung-Jae;Choi, Soon-Young
    • Journal of Energy Engineering
    • /
    • v.19 no.3
    • /
    • pp.195-202
    • /
    • 2010
  • A third of primary energy is lost as a waste heat. To improve this inefficient use of energy, systems using chemical reaction have been suggested and studied. In this study, methanol decomposition/synthesis reaction as a chemical reaction was selected for long time heat storage and long distance heat transport system because of safe, cheap and gaseous product. The purpose of this study is to find the optimal conditions in the methanol decomposition and synthesis reactions for long distance heat transport. Several parameters such as reaction temperature, pressure, $H_2$/CO ratio, space velocity, catalyst particle size were tested to find the effects on the reaction rates for the methanol synthesis. And the reaction temperature, space velocity, catalyst particle size were tested to find the effects on the production concentration for the methanol decomposition.

Shape Recovery Analyses of SMA Actuator-Activated Composite Shells Considering 3-D SMA Material Behaviors (3차원 거동이 고려된 형상기억합금 작동기 부착 복합재 쉘의 변형해석)

  • Kim, Cheol;Lee, Seong Hwan;Jo, Maeng Hyo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.4
    • /
    • pp.44-52
    • /
    • 2003
  • Shape memory alloys (SMA) are often used in smart structures as active components. Their ability to provide large recovery forces and displacements has been useful in many applications, including devices for artificial muscles, active structural acoustic control, and shape control. Based on the 3-dimensional SMA constitutive equation in this paper, the radial displacement control of externally pressurized circular and semicircular composite cylinders under external pressure with a thin SMA layer bonded on its inner surface or inserted between composite layers in investigated using 3-dimensional finite element analysis. Upon actuation through resistive heating, SMAs start to transform from martensitic into austenitic state, simultaneously recover the prestrain, and thus cause the composite cylinders to go back to their original shapes of the cylinder cross-sections.

Investigation of Turbulent Flow Effect in Segmented Arc Heater (아크히터 내부의 난류 효과에 대한 고찰)

  • Lee, Jeong-Il;Kim, Kyu-Hong;Kim, Chong-Am
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.5
    • /
    • pp.1-8
    • /
    • 2005
  • Flows in segmented arc-heaters have been calculated for prediction of experimental operating condition or for analysis and design of arc-heater itself. Some researchers succeeded in calculating accurately inner flows of a arc-heater, but could not made mathematical models which satisfy various operating conditions for many arc-heaters. this study is forced on turbulence for the generality of mathematical model. Instead of algebraic turbulence models which are frequently used for calculating inner flow of arc-heater, two equation turbulent models are used. Prediction results agree well with experiment data and it was confirmed that $k-\varepsilon$ two equation turbulence model is appropriate for a flow in an arc heater throughout extensive numerical testing.

Performance Characteristics of a High-Speed Jet Produced by a Pulsed-Arc Spark Jet Plasma Actuator (펄스 아크 스파크 제트 플라즈마 구동기에 의해 발생된 고속 제트의 효율적 운전 성능 특성에 관한 연구)

  • Kim, Young Sun;Shin, Jichul
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.11
    • /
    • pp.907-913
    • /
    • 2017
  • The performance of a spark jet driven by pulsed-arc plasma was investigated experimentally for various energy input. A high-speed jet (about 330 m/s) was obtained by rapid gas heating produced by 37 mJ of deposited energy per pulse. The peak velocity and penetration distance of the jet were proportional to the deposited power and the deposited energy per pulse, respectively. A smaller orifice diameter produces a higher velocity jet at lower energy levels. For the same deposited energy, higher-current pulses produce a higher jet velocity than higher-pulse-width pulses. A total deposited energy of about 10 mJ per pulse with a pulse duration of about $10{\mu}s$ was found to be the optimum for energy- efficient operation.

A Study on the Thermal Design of the Active Antenna System (능동형 안테나 시스템의 방열설계에 관한 연구)

  • Joung, Yong-In;Kwon, Min-Sang;Ryu, Jun-Suk;Park, Dong-Myung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.8
    • /
    • pp.687-693
    • /
    • 2018
  • In this paper, we studied on the thermal design of the active antenna system for stable performance considering thermal reliability. The active antenna has high performance and heat flux elements in T/R modules. Thermal heating of elements in T/R modules has to be dissipated effectively and the antenna has to be operated over the range of suggested temperature by the thermal design. T/R modules of high heat flux in the active antenna can be dissipated effectively by liquid cooling. In this study, we studied on the thermal design including the liquid cooling system to optimize the thermal performance of the active antenna. And the thermal design was verified by numerical analysis.

A Survey of the Residential Environment of Detached House of Elderly People (고령자가 거주하는 독립주택의 주거환경 실측)

  • Kim, Hyun-Jin;An, Ok-Hee
    • Korean Journal of Human Ecology
    • /
    • v.12 no.1
    • /
    • pp.85-94
    • /
    • 2003
  • With 106 detached houses where the elderly people lives, this study was conducted to perform a survey of their residential environment. The results of this study were summarized as follows: While the surveyed houses' safety, sanitation and convenience appeared to be positive, with respect to the conditions of location, 73.6% of the surveyed houses did not meet the requirements for comfort. The average area of each space indicated that the bed room was $12.09m^2$, the living room $14.38m^2$, the kitchen $8.96m^2$, the bath room $3.93m^2$, and the rest room $259m^2$. Then, 93.3% of the bed room had the doorsill. Also, 97.2% of the surveyed houses had retrievable space. The forms of the living room door were a hinged door(55.7%) and a sliding door(44.3%). The 43.4% of the finished material of the living room was wood which was highest. The cooking table forms of kitchen were mainly "ㄱ"-shaped(50.0%) and "ㅡ"-shaped(48.0%), and their average height was 815mm. The fuel used for kitchen was mainly the gas which accounted for 93.4%, but 95.3% of houses had no gas-warning devices. Most houses(77.4%) had an integrated type of bathroom and toilet. In addition, 63.2% houses had the stepped difference between the bathroom and other spaces. But they had no a sliding-prevention devices(not for 92.5%) or heating systems(not for 93.4%) in the bathroom.

  • PDF

Numerical simulation for surface settlement considering face vibration of TBM tunnelling in mixed-face condition (복합지반에서 TBM 굴진 진동을 고려한 지표침하에 대한 수치모델링)

  • Kwak, Chang-Won;Park, Inn-Joon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.17 no.3
    • /
    • pp.333-339
    • /
    • 2015
  • In this paper, the surface settlement resulted from the shallow TBM tunnelling has been numerically simulated. TBM tunnelling is especially used in urban area to avoid serious vibration and noise caused by explosion in NATM. Surface settlement is one of the most important problems encountered in all tunnelling and critical in urban areas. In this study, face vibration of TBM excavation is considered to estimate surface settlement trend according to TBM extrusion. The dynamic excavation forces are calculated by total torque on the TBM cutterhead in mixed-face of soil and weathered rock condition with shallow depth. A 3-dimensional FDM code is employed to simulate TBM tunnelling and mechanical-dynamic coupling analysis is performed. The 3D numerical analysis results showed that dynamic settlement histories and trend of surface settlement successfully. The maximum settlement occurred at the excavation point located at 2.5D behind the face, and the effect of face vibration on the surface settlement was verified in this study.

Seismic response analysis of virtual honam-jeju subsea tunnel (지진시 가상 호남-제주 해저터널의 지반응답 특성)

  • Kwak, Chang-Won;Jang, Dong-In;Park, Inn-Joon;Park, Seong-Yong
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.18 no.3
    • /
    • pp.319-329
    • /
    • 2016
  • Underground structures such as subsea tunnel having large section should be stable against seismic loads. In general, underground structures show more stable behavior due to the limited dynamic motion and force, and considerable energy dissipation; however, severe damage was reported from recent earthquakes. Therefore, more sophisticated and analytic approach is required to investigate the seismic response of underground structure like subsea tunnel. In this study, seismic analysis of virtual Honam-Jeju subsea tunnel are performed. Consequently, stresses and forces of tunnel lining increased at fractured and/or weak rock zones. Stresses and forces of tunnel lining also increased at large section under axially deformed condition; however, decrease under transversely deformed condition.

The Indoor Thermal and Air Environment during Winter in One-room Type Multi-family Houses Occupied by University Students (대학생 거주 원룸형 다가구주택의 겨울철 실내열공기환경 실태)

  • Choi, Yoon-Jung;Kim, Wn-Hak
    • Korean Journal of Human Ecology
    • /
    • v.19 no.4
    • /
    • pp.745-760
    • /
    • 2010
  • The purposes of this study were to investigate the state of indoor thermal and air environment during winter in the one-room type multi-family houses occupied by university students and to analyze factors which influenced this environment. Field survey was conducted in 10 houses between 30th January, 2009 and 13th February, 2009 which measured indoor thermal and air elements as well kept records of interviews with residents and other related factors. Measured elements were air temperature, relative humidity, as well as concentrations of $CO_2$, CO, TVOC, and PM-10. The results can be summarized as follows. 1) The mean air temperature in each house ranged from 19.3 to $25.3^{\circ}C$, so most houses were not suitable for evaluation criteria($20-22^{\circ}C$). The average $CO_2$ concentration in each house was 965~3259ppm, so most houses exceeded evaluation criteria(1000ppm). The average TVOC concentration in each house were 0.00~1.17ppm, 5 houses exceeded evaluation criteria(0.12ppm). 2) Relative humidity, CO concentration, and PM-10 concentration were suitable for evaluation criteria. Therefore, indoor thermal and air environment during winter in one-room type multi-family housing occupied by university students was found to be generally uncomfortable. Important factor which were found to influence air temperature and the concentration of $CO_2$ were smaller space capacity than general house. Other factors which were found to influence the environment of these houses were the existence of a balcony as well as factors relating to the behavior of occupants such whether or not heating were operated, whether windows were opened, whether fans used, whether occupants smoked or used cosmetics, and whether the space was dusted.

Seismic behaviors of twin tunnel with flexible segment (Flexible Segment가 설치된 병렬터널의 지진시 동적거동)

  • Kwak, Chang-Won;Park, Inn-Joon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.17 no.6
    • /
    • pp.695-702
    • /
    • 2015
  • Recently, the improvement of mechanical and theoretical issues in geo-centrifuge test enhances the applicability and accuracy of the test. Geo-centrifuge test is appropriate to simulate the behaviors of underground structures like tunnel, since tunnel interacts with the soil and/or rock around it and the test can embody the in-situ stress conditions effectively. In this study, the seismic behaviors of twin tunnel were analyzed based on geo-centrifuge test. Flexible segment to mitigate seismic acceleration were implemented in the model with thin and thick thickness. Based on the test results, it was found that flexible segment can decrease the peak acceleration generally, however, thin flexible segment was not able to reduce peak acceleration in short-period seismic wave. Thick flexible segment was more effective in case of high bedrock acceleration condition. Additionally, 3-dimensional numerical analysis was performed to verify the characteristics of seismic behavior and the effect of flexible segment. Consequently, the numerical analysis result showed good agreement with the test result.