• Title/Summary/Keyword: heating space

Search Result 675, Processing Time 0.027 seconds

Development and Application of the Super High Temperature Thermal Test Equipment (초고온 열하중 부가장치 개발 및 적용)

  • Jun, Joon-Tak;Kang, Hui-Won;Yang, Myung-Seog
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.1
    • /
    • pp.33-39
    • /
    • 2015
  • This paper describes test result of the Supersonic Wing Structure and the utility of thermal test equipment, which is possible to heat rapidly and continuously above $1,000^{\circ}C$, the durability and reliability of which are improved compared with the existing equipment. Through the test, we could predict the amount of strength reduction of the wing due to aerodynamic heating, caused by exposure of high temperature. Recently the aerodynamic heating temperature of the supersonic flying object is rapidly increased. It is possible to carry out the High Temperature Strength Test on the hypersonic speed flying object with the newly designed thermal test equipment. Because of that, we can upgrade the High Temperature Strength Structure Test technique and test reliability.

Cooling and Heating Performance of Ground Source Heat Pump using Effluent Ground Water (유출지하수열원 지열히트펌프의 냉난방성능)

  • Park, Geun-Woo;Nam, Hyun-Kyu;Kang, Byung-Chan
    • Proceedings of the SAREK Conference
    • /
    • 2007.11a
    • /
    • pp.434-440
    • /
    • 2007
  • The Effluent ground water overflows in deep and broad ground space building. Temperature of effluent ground water is in 12$\sim$18$^{\circ}C$ annually and the quality of that water is as good as living water. Therefore if the flow rate of effluent ground water is sufficient as source of heat pump, that is good heat source and heat sink of heat pump. Effuent ground water contain the thermal energy of surrounding ground. So this is a new application of ground source heat pump. In this study open type and close type heat pump system using effluent ground water was installed and tested for a church building with large and deep ground space. The effluent flow rate of this building is 800$\sim$1000 ton/day. The heat pump capacity is 5RT each. The heat pump system heating COP was 3.0$\sim$3.3 for the open type and 3.3$\sim$3.8 for the close type system. The heat pump system cooling COP is 3.2$\sim$4.5 for the open type and 3.8$\sim$4.2 for close type system. This performance is up to that of BHE type ground source heat pump.

  • PDF

The expectation of future cooling and heating degree day of the Seoul and Ulsan using HadCM3 (HadCM3를 이용한 서울 및 울산지역의 미래 냉.난방도일 예측)

  • Lee, Kwan-Ho;Yoo, Ho-Chun;Noh, Kyoung-Hwan
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2008.04a
    • /
    • pp.160-165
    • /
    • 2008
  • The concern in energy reduction in the field of architecture which takes up a big weight in domestic energy consumption is gradually increasing. For this reason, a lot of research work on this matter is being carried out. Particularly, it is generally required that currently used system in a structure for energy reduction should be maximized in its efficiency. In addition, research on several energy reduction typed systems is underway. Such a research work should not only include the one in time of the present but also keep up with the trend for future-oriented research. This research paper forecasted and analyzed the trend for global warming and demand of a structure for energy in the future by applying climate scenarios to cooling degree-day and heating degree-day. Also, this research found out the decrease in heating degree-days and increase in cooling degree-days until this moment due to the progress of global warming. In addition, as for heating degree-days in the future forecasted on the basis of HadCM3, it is estimated that the range of decrease could be ever bigger starting 2040 in case of Seoul and also starting 2010 in case of Ulsan ever after respectively. In case of cooling degree-days, it is estimated that its increase range could be bigger abruptly starting 2050, and after 2080, its increase range would be much bigger.

  • PDF

Evaluation of Indoor Thermal Environment According to Air-Barrier Air Conditioning System in Perimeter Zone (페리미터존의 에어배리어 공조방식에 따른 실내 열환경 평가)

  • Park Byung-Yoon;Ham Heung-Don;Sohn Jang-Yeul
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.4
    • /
    • pp.370-376
    • /
    • 2005
  • For the purpose of investigating the effective removal of heating/cooling load from light-weighted building envelope, two air-conditioning systems, conventional parameter air-conditioning system and air-barrier system, are evaluated and compared by both experiment and simulation with six different cases during heating and cooling season. In addition, the characteristics of window-side building thermal load are assessed by varying supply air velocity in order to seek the optimal system operation condition. The results are as follows. 1) Air-barrier system is more effective to remove heating/cooling load at perimeter zone than conventional parameter air-conditioning system. Moreover, the better effectiveness appears during cooling season than during heating season. 2) The experiment during cooling season provides that indoor temperature of air-barrier system shows $1^{\circ}C$ less than that of the conventional system with similar outdoor air temperature profile, and indoor temperature distribution is more uniform throughout the experimented model space. It concludes that air-barrier system can achieve energy saving comparing to the conventional system. 3) The capturing efficiency of air-barrier system is 0.47 on heating season and 0.2 on cooling season with the same supply air volume. It results that the system performs effectively to remove building thermal load, moreover demonstrates high efficiency during cooling season. 4) The simulation results provide that capturing efficiency to evaluate the effective removal of building load from perimeter zone shows high value when supply air velocity is 1 m/s.

Numerical Analysis of Laboratory Heating Experiment on Granite Specimen (화강암의 실내 가열실험에 대한 수치해석적 검토)

  • Dong-Joon, Youn;Changlun, Sun;Li, Zhuang
    • Tunnel and Underground Space
    • /
    • v.32 no.6
    • /
    • pp.558-567
    • /
    • 2022
  • The evolution of temperature and thermal stress in a granite specimen is studied via heating experiment in the context of a high-level radioactive waste repository. A heating condition based on the decay-induced heat is applied to a cubic granite specimen to measure the temperature and stress distributions and their evolution over time. The temperature increases quickly due to heat conduction along the heated surfaces, but a significant amount of thermal energy is also lost through other surfaces due to air convection and conduction into the loading machine. A three-dimensional finite element-based model is used to numerically reproduce the experiment, and the thermo-mechanical coupling behavior and modeling conditions are validated with the comparison to the experimental results. The most crucial factors influencing the heating experiment are analyzed and summarized in this paper for future works.

TOWARD A NEXT GENERATION SOLAR CORONAGRAPH: DEVELOPMENT OF A COMPACT DIAGNOSTIC CORONAGRAPH FOR THE ISS

  • Cho, K.S.;Bong, S.C.;Choi, S.;Yang, H.;Kim, J.;Baek, J.H.;Park, J.;Lim, E.K.;Kim, R.S.;Kim, S.;Kim, Y.H.;Park, Y.D.;Clarke, S.W.;Davila, J.M.;Gopalswamy, N.;Nakariakov, V.M.;Li, B.;Pinto, R.F.
    • Journal of The Korean Astronomical Society
    • /
    • v.50 no.5
    • /
    • pp.139-149
    • /
    • 2017
  • The Korea Astronomy and Space Science Institute plans to develop a coronagraph in collaboration with National Aeronautics and Space Administration (NASA) and to install it on the International Space Station (ISS). The coronagraph is an externally occulted one-stage coronagraph with a field of view from 3 to 15 solar radii. The observation wavelength is approximately 400 nm, where strong Fraunhofer absorption lines from the photosphere experience thermal broadening and Doppler shift through scattering by coronal electrons. Photometric filter observations around this band enable the estimation of 2D electron temperature and electron velocity distribution in the corona. Together with a high time cadence (<12 min) of corona images used to determine the geometric and kinematic parameters of coronal mass ejections, the coronagraph will yield the spatial distribution of electron density by measuring the polarized brightness. For the purpose of technical demonstration, we intend to observe the total solar eclipse in August 2017 with the filter system and to perform a stratospheric balloon experiment in 2019 with the engineering model of the coronagraph. The coronagraph is planned to be installed on the ISS in 2021 for addressing a number of questions (e.g., coronal heating and solar wind acceleration) that are both fundamental and practically important in the physics of the solar corona and of the heliosphere.

Survey on the Ratio of Kitchen to Total Space and Ventilation System Capacity of Kitchens through Case Studies in Korean Foods Restaurants (사례 조사를 통한 한식 음식점의 주방면적 비율과 환기시설의 적정성 조사)

  • Chang, Hyeja;Choi, Gyunggi;Wang, Taehwan;Kwak, Tongkyung
    • Korean journal of food and cookery science
    • /
    • v.31 no.1
    • /
    • pp.33-40
    • /
    • 2015
  • For the globalization of Korean food restaurants, the kitchens should be equipped with proper ventilation systems and space to keep clean and ensure food safety. This study aimed to examine the ratio of kitchen to total space of restaurant and the suitability of the ventilation systems employed at Korean food restaurants. Data were collected by on-site survey of 12 Korean foods restaurants in Seoul. Length and width of the restaurants were measured with scale. Temperatures and air velocity around the heating equipment, working area, and hood were measured with a thermal imaging camera anemometer and thermometer. Statistical analyses were conducted with the SPSS program. The average space of the restaurants was $25.7m^2$. The ratio of kitchen to space was 0.22 for restaurants sized $32m^2$, 0.28 for $33-66m^2$, 0.21 for $66.1-99m^2$, 0.16 for $99.1-148.5m^2$, and 0.35 for those above $148.5m^2$. Average maximum and minimum air velocity around the hood were 0.28 m/sec and 0.22 m/sec, respectively. Under these conditions, the temperature of the working area was $41^{\circ}C$, presenting an uncomfortable indoor temperature for kitchen employees to work. When classifying 3 groups based on the minimum and maximum air velocity, the temperatures near the cooking area and in the hood of the restaurants showed significant differences among the three groups. When the maximum air velocity was over 0.3 m/sec, the temperature of the cooking area was as $30.1^{\circ}C$, showing a significantly lower temperature (p<0.01). Based on these results, the kitchen space rate of 0.25 to the total space and a ventilation system maintaining a maximum air velocity over 0.3 m/sec were recommended for ensuring the food safety of Korean foods restaurants sized 66 to $99m^2$.

TOWARD NEXT GENERATION SOLAR CORONAGRAPH: DEVELOPMENT OF COMPACT DIAGNOSTIC CORONAGRAPH ON ISS

  • Cho, Kyungsuk;Bong, Suchan;Choi, Seonghwan;Yang, Heesu;Kim, Jihun;Baek, Jihye;Park, Jongyeob;Lim, Eun-Kyung;Kim, Rok-Soon;Kim, Sujin;Kim, Yeon-Han;Park, Young-Deuk;Clarke, S.W.;Davila, J.M.;Gopalswamy, N.;Nakariakov, V.M.;Li, B.;Pinto, R.F.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.2
    • /
    • pp.66.2-66.2
    • /
    • 2017
  • The Korea Astronomy and Space Science Institute plans to develop a coronagraph in collaboration with National Aeronautics and Space Administrative (NASA) and install it on the International Space Station (ISS). The coronagraph is an externally occulted one stage coronagraph with a field of view from 2.5 to 15 solar radii. The observation wavelength is approximately 400 nm where strong Fraunhofer absorption lines from the photosphere are scattered by coronal electrons. Photometric filter observation around this band enables the estimation of 2D electron temperature and electron velocity distribution in the corona. Together with the high time cadence (< 12 min) of corona images to determine the geometric and kinematic parameters of coronal mass ejections, the coronagraph will yield the spatial distribution of electron density by measuring the polarized brightness. For the purpose of technical demonstration, we intend to observe the total solar eclipse in 2017 August for the filter system and to perform a stratospheric balloon experiment in 2019 for the engineering model of the coronagraph. The coronagraph is planned to be installed on the ISS in 2021 for addressing a number of questions (e.g. coronal heating and solar wind acceleration) that are both fundamental and practically important in the physics of the solar corona and of the heliosphere.

  • PDF

SPACE WEATHER RESEARCH BASED ON GROUND GEOMAGNETIC DISTURBANCE DATA (지상지자기변화기록을 이용한 우주천기연구)

  • AHN BYUNG-HO
    • Publications of The Korean Astronomical Society
    • /
    • v.15 no.spc2
    • /
    • pp.1-13
    • /
    • 2000
  • Through the coupling between the near-earth space environment and the polar ionosphere via geomagnetic field lines, the variations occurred in the magnetosphere are transferred to the polar region. According to recent studies, however, the polar ionosphere reacts not only passively to such variations, but also plays active roles in modifying the near-earth space environment. So the study of the polar ionosphere in terms of geomagnetic disturbance becomes one of the major elements in space weather research. Although it is an indirect method, ground magnetic disturbance data can be used in estimating the ionospheric current distribution. By employing a realistic ionospheric conductivity model, it is further possible to obtain the distributions of electric potential, field-aligned current, Joule heating rate and energy injection rate associated with precipitating auroral particles and their energy spectra in a global scale with a high time resolution. Considering that the ground magnetic disturbances are recorded simultaneously over the entire polar region wherever magnetic station is located, we are able to separate temporal disturbances from spatial ones. On the other hand, satellite measurements are indispensible in the space weather research, since they provide us with in situ measurements. Unfortunately it is not easy to separate temporal variations from spatial ones specifically measured by a single satellite. To demonstrate the usefulness of ground magnetic disturbance data in space weather research, various ionospheric quantities are calculated through the KRM method, one of the magneto gram inversion methods. In particular, we attempt to show how these quantities depend on the ionospheric conductivity model employed.

  • PDF

Study of Space Charge of Metal/copper(Ⅱ)-phthalocyanine Interface (금속/copper(Ⅱ)-phthalocyanine 계면에서의 Space Charge 연구)

  • Park, Mie-Hwa;Yoo, Hyun-Jun;Yoo, HyungKun;Na, Seunguk;Kim, Sonshui;Lee, Kie-Jin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.4
    • /
    • pp.350-356
    • /
    • 2005
  • We report the space charge and the surface potential of the interface between metal and copper(Ⅱ)-phthalocyanine(CuPc) thin films by measuring the microwave reflection coefficients S/sub 11/ of thin films using a near-field scanning microwave microscope(NSMM). CuPc thin films were prepared on Au and Al thin films using a thermal evaporation method. Two kinds of CuPc thin films were prepared by different substrate heating conditions; one was deposited on preheated substrate at 150。C and the other was annealed after deposition. The microwave reflection coefficients S/sub 11/ of CuPc thin films were changed by the dependence on grain alignment due to heat treatment conditions and depended on thickness of CuPc thin films. Electrical conductivity of interface between metal and organic CuPc was changed by the space charge of the interface. By comparing reflection coefficient S/sub 11/ we observed the electrical conductivity changes of CuPc thin films by the changes of surface potential and space charge at the interface.