• Title/Summary/Keyword: heating information

Search Result 524, Processing Time 0.024 seconds

C-and Fe-(Beewax.Polyethylene) PTC Thermistors (C- 및 Fe-(Beewax.Polyethylene) 정특성 감온소자)

  • Lee, Jong-Hyeon;Son, Byeong-Gi;Lee, Jong-Deok
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.13 no.4
    • /
    • pp.6-11
    • /
    • 1976
  • The carbon (the iron) -beewax.polyethylene thermistors have been prepared by heating the well ground mixture of carbon (iron), beewax and polyethylene at 16$0^{\circ}C$ for one hour and by cooling it under pressure of 12kgw/cm2. The resistivity for the former (the latter) increased from 102$\Omega$.cm (104$\Omega$.cw) to 1010$\Omega$.cm(1010$\Omega$.cm) as temperature changed from 2$0^{\circ}C$ to 9$0^{\circ}C$. The resistivity, 102$\Omega$.cm at room temperature for the former, was lower by order Q( two than that for the papostor made by the earlier reporter. The reproducibility, which has been an important Problem for this type of thermistors to be industrialized, was improved by introducing pressure in cooling procedure for both carbon and iron thermistors.

  • PDF

Establishment of Fatigue Life Evaluation and Management System for District Beating Pipes Considering Operating Temperature Transition Data (운전이력을 고려한 지역난방 열배관의 피로수명 평가 및 관리 체계 구축)

  • Chang Yoon-Suk;Jung Sung-Wook;Kim Hyeong-Keun;Choi Jae-Boong;Kim Sang-Ho;Kim Youn-Hong;Kim Young-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.9 s.240
    • /
    • pp.1235-1242
    • /
    • 2005
  • A district heating(DH) system supplies environmentally-friend heat and is appropriate for reduction of energy consumption and/or air pollutions. The DH transmission pipe, composed of supply and return pipes, has been used to transmit the heat and prevent heat loss during transportation. The two types of pipes are operated at a temperature of $75\~115^{\circ}C\;and\;40\~65^{\circ}C$, respectively, with an operating pressure of less than 1.568MPa. The objectives of this paper are to systematize data processing of transition temperature and investigate its effects on fatigue life of DH pipes. For the sake of this, about 5 millions temperature data were measured during one year at ten locations, and then available fatigue lift estimation schemes were examined and applied to quantify the specific thermal fatigue life of each pipe. As a result, a relational database management system as well as reliable fatigue lift evaluation procedures is established for Korean DH pipes. Also, since the prototypal evaluation results satisfied both cycle-based and stress-based fatigue criteria, those can be used as useful information in the future fer optimal design, operation and energy saving via setting of efficient condition and stabilization of water temperature.

A Study on the Characteristic of Energy Consumption in the Super High-rise Mixed-use Housing (초고층 주상복합 아파트의 에너지 소비특성에 관한 연구)

  • Lee, Byunghee;Lee, Jaehyuk;Je, Heaseong;Kang, Dongho
    • KIEAE Journal
    • /
    • v.10 no.5
    • /
    • pp.63-69
    • /
    • 2010
  • Recently, by the increase of demand on Super High-rise mixed-use housing and it's advanced quality, the interest on it has been raised socially. In accordance with it, the matter of resident's health and energy efficiency has been controversial in terms of living in super high-rise housing. This study started from the idea that it is necessary to have an objective data which that has many residents in narrow space with high density. The purpose of this study are as follows; Firstly, with the quantitative data analysis on energy, it will confirm the objective information on the unclear negative idea of super high-rise mixed-use housing. Secondly, it will establish the fundamental data on the energy of super high-rise mixed-use housing by examining the characteristic of energy consumption of the complex which was built more than 5 years ago. There are 4 methods of this study. Firstly, it follows the steps of theoretical view, and defines concept to study on the characteristic of super high-rise mixed-use housing. Secondly, referring to the previous study, it provides better understanding on th stream of this research and the limit as well to guide the direction in terms of energy consumption. Thirdly, it evaluates the characteristic of monthly consumption by researching the use of electricity energy and heating energy of super high-rise mixed-use housing. The major conclusions of this study are as follows; Firstly, the heating use of apartment complex is same, which is not influenced by the type of the building. Secondly, the electricity use of super high-rise mixed-use housing is from 1,2 to 1.5 as high as the normal apartment.

Thermal Image Processing and Synthesis Technique Using Faster-RCNN (Faster-RCNN을 이용한 열화상 이미지 처리 및 합성 기법)

  • Shin, Ki-Chul;Lee, Jun-Su;Kim, Ju-Sik;Kim, Ju-Hyung;Kwon, Jang-woo
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.12
    • /
    • pp.30-38
    • /
    • 2021
  • In this paper, we propose a method for extracting thermal data from thermal image and improving detection of heating equipment using the data. The main goal is to read the data in bytes from the thermal image file to extract the thermal data and the real image, and to apply the composite image obtained by synthesizing the image and data to the deep learning model to improve the detection accuracy of the heating facility. Data of KHNP was used for evaluation data, and Faster-RCNN is used as a learning model to compare and evaluate deep learning detection performance according to each data group. The proposed method improved on average by 0.17 compared to the existing method in average precision evaluation.As a result, this study attempted to combine national data-based thermal image data and deep learning detection to improve effective data utilization.

Fabrication of Thermoelectric Module and Analysis of its Power Generation Characteristics (열전발전소자 제작 및 발전특성 분석)

  • Choi, Taeho;Kim, Tae Young
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.2
    • /
    • pp.90-97
    • /
    • 2021
  • In this study, a Bi2Te3 thermoelectric generator (TEG) was fabricated to convert unused thermal energy into useful electrical energy. For the performance test, a dedicated experiment device consisting of a heating block operating with cartridge heaters and a cooling block through which a refrigerant flows was constructed. A 3×3 array of thermocouples was mounted on the heating block and the cooling block, respectively, to derive the temperature fields and heat transfer rate onto both sides of the TEG. Experiments were conducted for a total of 9 temperature differences, obtaining V-I and P-R curves. The results of 7 variables including Seebeck coefficients that have a major effect on performance were presented as a function of the temperature difference. The feasibility of the energy recovery performance of the developed TEG was verified from the maximum power output of 7.5W and conversion efficiency of 11.3%.

Thermal Resistance Characteristics and Fin-Layout Structure Optimization by Gate Contact Area of FinFET and GAAFET (FinFET 및 GAAFET의 게이트 접촉면적에 의한 열저항 특성과 Fin-Layout 구조 최적화)

  • Cho, Jaewoong;Kim, Taeyong;Choi, Jiwon;Cui, Ziyang;Xin, Dongxu;Yi, Junsin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.34 no.5
    • /
    • pp.296-300
    • /
    • 2021
  • The performance of devices has been improved with fine processes from planar to three-dimensional transistors (e.g., FinFET, NWFET, and MBCFET). There are some problems such as a short channel effect or a self-heating effect occur due to the reduction of the gate-channel length by miniaturization. To solve these problems, we compare and analyze the electrical and thermal characteristics of FinFET and GAAFET devices that are currently used and expected to be further developed in the future. In addition, the optimal structure according to the Fin shape was investigated. GAAFET is a suitable device for use in a smaller scale process than the currently used, because it shows superior electrical and thermal resistance characteristics compared to FinFET. Since there are pros and cons in process difficulty and device characteristics depending on the channel formation structure of GAAFET, we expect a mass-production of fine processes over 5 nm through structural optimization is feasible.

Implementation of Smart Home System based on AWS IoT and MQTT (AWS IoT 와 MQTT 기반 스마트 홈 시스템 구현)

  • Jung, Inhwan;Hwang, Kitae;Lee, Jae-Moon
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.6
    • /
    • pp.7-12
    • /
    • 2022
  • This paper introduces the implementation of the AWS IoT service and MQTT based smart home system. The smart home system implemented in this study can monitor temperature and humidity, and can manually adjust the air conditioner heating, and can check the visitors with the camera and remotely control the door lock. The implemented smart home system controls door locks, heating and air conditioners using Arduino, and manages the collected data and control information using the AWS IoT service. In this study, the Android app has been developed to allow users to control IoT devices remotely, and the MQTT protocol was used for data communication and control between the app and the AWS IoT server and Arduino. The implemented smart home system has been implemented based on AWS IoT service, which has scalability to add sensors and devices.

The Horizon Run 5 Cosmological Hydrodynamical Simulation: Probing Galaxy Formation from Kilo- to Giga-parsec Scales

  • Lee, Jaehyun;Shin, Jihey;Snaith, Owain N.;Kim, Yonghwi;Few, C. Gareth;Devriendt, Julien;Dubois, Yohan;Cox, Leah M.;Hong, Sungwook E.;Kwon, Oh-Kyoung;Park, Chan;Pichon, Christophe;Kim, Juhan;Gibson, Brad K.;Park, Changbom
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.45 no.1
    • /
    • pp.38.2-38.2
    • /
    • 2020
  • Horizon Run 5 (HR5) is a cosmological hydrodynamical simulation which captures the properties of the Universe on a Gpc scale while achieving a resolution of 1 kpc. This enormous dynamic range allows us to simultaneously capture the physics of the cosmic web on very large scales and account for the formation and evolution of dwarf galaxies on much smaller scales. Inside the simulation box. we zoom-in on a high-resolution cuboid region with a volume of 1049 × 114 × 114 Mpc3. The subgrid physics chosen to model galaxy formation includes radiative heating/cooling, reionization, star formation, supernova feedback, chemical evolution tracking the enrichment of oxygen and iron, the growth of supermassive black holes and feedback from active galactic nuclei (AGN) in the form of a dual jet-heating mode. For this simulation we implemented a hybrid MPI-OpenMP version of the RAMSES code, specifically targeted for modern many-core many thread parallel architectures. For the post-processing, we extended the Friends-of-Friend (FoF) algorithm and developed a new galaxy finder to analyse the large outputs of HR5. The simulation successfully reproduces many observations, such as the cosmic star formation history, connectivity of galaxy distribution and stellar mass functions. The simulation also indicates that hydrodynamical effects on small scales impact galaxy clustering up to very large scales near and beyond the baryonic acoustic oscillation (BAO) scale. Hence, caution should be taken when using that scale as a cosmic standard ruler: one needs to carefully understand the corresponding biases. The simulation is expected to be an invaluable asset for the interpretation of upcoming deep surveys of the Universe.

  • PDF

Evaluating the Feasibility of a Ground Source Heat pump System for an Elderly Care Center through Simulation Approach (시뮬레이션을 통한 노인 요양 시설의 지열 히트펌프 시스템 적용 가능성 평가)

  • Byonghu Sohn;Young-Sun Kim;Seung-Eon Lee
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.19 no.4
    • /
    • pp.39-52
    • /
    • 2023
  • This study analyzes the energy performance of a elderly care center building and the applicability of a ground source heat pump (GSHP) system through simulation approach. For this purpose, a building information modeling (BIM) program and an energy performance calculation program were used. The impact of the mechanical ventilation system on the energy requirements of the heating and cooling system and the indoor environment was also analyzed, focusing on the change in indoor carbon dioxide (CO2) concentration, which is a representative indicator of the indoor environment (air quality). The simulation results showed that the target building exceeds Level 7 in terms of simulated primary energy consumption or actual energy consumption. In addition, it was analyzed that the target building could not maintain the indoor CO2 concentration below the standard concentration by natural ventilation through window opening alone. Combining the GSHP system with the mechanical ventilation system (Case B and Case C) can further reduce the overall energy consumption by reducing the amount of outdoor air introduced by opening windows. The cost savings compared to the baseline case are estimated to be 67.3% for Case A, 63.7% for Case B, 65.5% for Case C, and 42.5% for Case D. It is necessary to analyze the impact of various renewable energy technologies and passive ones on the energy performance and indoor environment of elderly care centers.

Precipitation Behavior and Mechanical Properties of Al-Zn-Mg-(Cu, Mn, Ag) Alloy Manufactured by P/M Method

  • Chang-Hwan Bae;Seung-In Lim;Chang-Suk Han
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.37 no.6
    • /
    • pp.319-330
    • /
    • 2024
  • In this study, the strength enhancement of Meso20 alloy, which is a P/M7000 series aluminum alloy. The effect on the precipitation process and mechanical properties was investigated by focusing on the phases precipitated during the heating maintenance and high-temperature extrusion of the powder after CIP (cold isostatic pressing) molding. Changes in the precipitation process were investigated when the amounts of Mn and Cu were changed. After solution heat treatment at 763 K for 7.2 ks, and then isothermal aging at 383 K for 108 ks, precipitates in the specimen are of two types: a rod-shaped compound and a massive of Al6Mn. As a result of observation using SEM, the atomized powder of Meso20 before heating was a cell shaped structures. In the specimen quenched after heat treatment at 773 K for 3.6 ks, rod-shaped pre cipitates (Q phase) and massive precipitates (Al6Mn) were observed. As a result of EPMA analysis, large amounts of Mg, Zn, and Cu were included, and the average cell size was 2.6 ㎛, and the average width of the segregation layer was 130 nm. When the amount of Cu was kept constant and the amount of Mn was increased from 4 mass% to 7 mass%, the Al6Mn precipitation amount increased, and both the compressive strength and the plastic elongation decreased. When the amount of Mn was kept constant and the amount of Cu was increased from 0.5 mass% to 2.5 mass%, the amount of Q phase precipitation increased.