DOI QR코드

DOI QR Code

FinFET 및 GAAFET의 게이트 접촉면적에 의한 열저항 특성과 Fin-Layout 구조 최적화

Thermal Resistance Characteristics and Fin-Layout Structure Optimization by Gate Contact Area of FinFET and GAAFET

  • 조재웅 (성균관대학교 전자전기컴퓨터공학과) ;
  • 김태용 (성균관대학교 전자전기컴퓨터공학과) ;
  • 최지원 (성균관대학교 전자전기컴퓨터공학과) ;
  • 최자양 (성균관대학교 전자전기컴퓨터공학과) ;
  • 신동욱 (성균관대학교 전자전기컴퓨터공학과) ;
  • 이준신 (성균관대학교 정보통신대학)
  • Cho, Jaewoong (Department of Electrical and Computer Engineering, Sungkyunkwan University) ;
  • Kim, Taeyong (Department of Electrical and Computer Engineering, Sungkyunkwan University) ;
  • Choi, Jiwon (Department of Electrical and Computer Engineering, Sungkyunkwan University) ;
  • Cui, Ziyang (Department of Electrical and Computer Engineering, Sungkyunkwan University) ;
  • Xin, Dongxu (Department of Electrical and Computer Engineering, Sungkyunkwan University) ;
  • Yi, Junsin (College of Information and Communication Engineering, Sungkyunkwan University)
  • 투고 : 2021.06.03
  • 심사 : 2021.06.23
  • 발행 : 2021.09.01

초록

The performance of devices has been improved with fine processes from planar to three-dimensional transistors (e.g., FinFET, NWFET, and MBCFET). There are some problems such as a short channel effect or a self-heating effect occur due to the reduction of the gate-channel length by miniaturization. To solve these problems, we compare and analyze the electrical and thermal characteristics of FinFET and GAAFET devices that are currently used and expected to be further developed in the future. In addition, the optimal structure according to the Fin shape was investigated. GAAFET is a suitable device for use in a smaller scale process than the currently used, because it shows superior electrical and thermal resistance characteristics compared to FinFET. Since there are pros and cons in process difficulty and device characteristics depending on the channel formation structure of GAAFET, we expect a mass-production of fine processes over 5 nm through structural optimization is feasible.

키워드

과제정보

이 연구는 산업통상자원부 '산업혁신인재성장지원사업'의 재원으로 한국산업기술진흥원(KIAT)의 지원을 받아 수행된 연구임(2021년 차세대 디스플레이 공정·장비·소재 전문인력 양성사업, 과제번호: P0012453).

참고문헌

  1. S. Dey, J. Jena, E. Mohapatra, T. P. Dash, S. Das, and C. K. Maiti, Phys. Scr., 95, 014001 (2019). [DOI: https://doi.org/10.1088/1402-4896/ab4621]
  2. S. Zhang, Proc. 2nd International Conference on Electronic Engineering and Informatics (IOP Publishing Ltd, Lanzhou, China, 2020) p. 012054. [DOI: https://doi.org/10.1088/1742-6596/1617/1/012054]
  3. S. Singh and A. Raman, J. Comput. Electron., 17, 967 (2018). [DOI: https://doi.org/10.1007/s10825-018-1166-0]
  4. M. Khaouani and A. Guen-Bouazza, Int. J. Electr. Comput. Eng., 7, 1899 (2017). [DOI: https://doi.org/10.11591/ijece.v7i4.pp1899-1905]
  5. M. Karner, O. Baumgartner, Z. Stanojevic, F. Schanovsky, G. Strof, C. Kernstock, H. W. Karner, G. Rzepa, and T. Grasser, Proc. 2016 IEEE International Electron Devices Meeting (IEDM) (IEEE, San Francisco, USA, 2016) p. 30.7.1. [DOI: https://doi.org/10.1109/IEDM.2016.7838516]
  6. T. N. Theis and H.S.P. Wong, Comput. Sci. Eng., 19, 41 (2017). [DOI: https://doi.org/10.1109/MCSE.2017.29]
  7. E. P. DeBenedictis, Computer, 50, 72 (2017). [DOI: https://doi.org/10.1109/MC.2017.34]
  8. U. K. Das and T. K. Bhattacharyya, IEEE Trans. Electron Devices, 67, 2633 (2020). [DOI: https://doi.org/10.1109/TED.2020.2987139]
  9. T. Song, W. Rim, H. Kim, K. H. Cho, T. Kim, T. Lee, G. Bae, D. W. Kim, S. D. Kwon, S. Baek, J. Jung, J. Kye, H. Jung, H. Kim, S. M. Jung, and J. Park, Proc. 2021 IEEE International Solid- State Circuits Conference (ISSCC) (IEEE, San Francisco, USA, 2021) p. 338. [DOI: https://doi.org/10.1109/ISSCC42613.2021.9365988]
  10. S. H. Joung and S. Y. Kim, Proc. 2019 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD) (IEEE, Udine, Italy, 2019) p. 1. [DOI: https://doi.org/10.1109/SISPAD.2019.8870498]
  11. F. Ahmed, R. Paul, and J. K. Saha, Proc. 2020 IEEE 10th International Conference Nanomaterials: Applications & Properties (NAP) (IEEE, Sumy, Ukraine, 2020) p. 01TPNS04-1. [DOI: https://doi.org/10.1109/NAP51477.2020.9309688]
  12. I. Myeong, D. Son, H. Kim, M. Kang, and H. Shin, J. Semicond. Technol. Sci., 17, 685 (2017). [DOI: https://doi.org/10.5573/JSTS.2017.17.5.685]
  13. I. Jain, A. Gupta, T. B. Hook, and A. Dixit, IEEE Trans. Electron Devices., 65, 4238 (2018). [DOI: https://doi.org/10.1109/TED.2018.2863730]
  14. B. K. Kompala, P. Kushwaha, H. Agarwal, S. Khandelwal, J. P. Duarte, C. Hu, and Y. S. Chauhan, Jpn. J. Appl. Phys., 55, 04ED11 (2016). [DOI: http://doi.org/10.7567/JJAP.55.04ED11]
  15. T. Song, IEEE Access, 8, 149984 (2020). [DOI: https://doi.org/10.1109/ACCESS.2020.3015596]
  16. A. Veloso, T. Huynh-Bao, P. Matagne, D. Jang, G. Eneman, N. Horiguchi, and J. Ryckaert, Solid-State Electron., 168, 107736 (2020). [DOI: https://doi.org/10.1016/j.sse.2019.107736]
  17. A. Dasgupta and C. Hu, IEEE Electron Device Lett., 41, 1750 (2020). [DOI: https://doi.org/10.1109/LED.2020.3032390]
  18. S. Barraud, V. Lapras, B. Previtali, M. P. Samson, J. Lacord, S. Martinie, M. A. Jaud, S. Athanasiou, F. Triozon, O. Rozeau, J. M. Hartmann, C. Vizioz, C. Comboroure, F. Andrieu, J. C. Barbe, M. Vinet, and T. Ernst, Proc. 2017 IEEE International Electron Devices Meeting (IEDM) (IEEE, San Francisco, USA, 2017) p. 29.2.1. [DOI: https://doi.org/10.1109/IEDM.2017.8268473]
  19. G. Bae, D. I. Bae, M. Kang, S. M. Hwang, S. S. Kim, B. Seo, T. Y. Kwon, T. J. Lee, C. Moon, Y. M. Choi, K. Oikawa, S. Masuoka, K. Y. Chun, S. H. Park, H. J. Shin, J. C. Kim, K. K. Bhuwalka, D. H. Kim, W. J. Kim, J. Yoo, H. Y. Jeon, M. S. Yang, S. J. Chung, D. Kim, B. H. Ham, K. J. Park, W. D. Kim, S. H. Park, G. Song, Y. H. Kim, M. S. Kang, K. H. Hwang, C. H. Park, J. H. Lee, D. W. Kim, S. M. Jung, and H. K. Kang, Proc. 2018 IEEE International Electron Devices Meeting (IEDM) (IEEE, San Francisco, USA, 2018) p. 28.7.1. [DOI: https://doi.org/10.1109/IEDM.2018.8614629]