• Title/Summary/Keyword: heating elements

Search Result 264, Processing Time 0.029 seconds

Defrosting Behavior of Fin-Tube Heat Exchanger with PTC Heating Sheet

  • Jhee, Sung;Lee, Kwan-Soo
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.9 no.1
    • /
    • pp.29-38
    • /
    • 2001
  • In this paper, the defrosting characteristics of a PTC heating sheet is investigated by means of a defrosting heat source for the fin-tube heat exchanger in a refrigerator The defrosting characteristics of the PTC heating sheet are examined and compared with those of a conventional electric heater experimentally. It is found that the characteristics of the water draining rate with the defrosting time show a smoothly oscillating pattern when the PTC heating sheet Is used, and the drained water is completely melted. The defrosting efficiency of the PTC heating sheet is found to be about 75%, which is about 25% higher than that of the electric heater. Also, the reduction of the defrosting time and the increment of the defrosting efficiency may be obtained by improving the arrangement of the heating elements of the healing sheet. It is shown that the defrosting time of the PTC heating sheet increases linearly with the amount of frost, whereas the defrosting efficiency is nearly constant. When applying the PTC heating sheet to the refrigerating system, one should notice the fact that the defrosting performance of the PTC heating sheet may be degraded due to the repetitive operations.

  • PDF

Preparation and Characterization of Pitch-based Carbon Paper for Low Energy and High Efficiency Surface Heating Elements (저전력 및 고효율 면상발열체를 위한 피치기반 탄소종이 제조 및 특성)

  • Yang, Jae-Yeon;Yoon, Dong-Ho;Kim, Byoung-Suhk;Seo, Min-Kang
    • Composites Research
    • /
    • v.31 no.6
    • /
    • pp.412-420
    • /
    • 2018
  • In this work, phenolic resins containing conductive carbon fillers, such as, petroleum coke, carbon black, and graphite, were used to improve the surface heating elements by impregnating a pitch-based carbon paper. The influence of conductive carbon fillers on physicochemical properties of the carbon paper was investigated through electrical resistance measurement and thermal analysis. As a result, the surface resistance and interfacial contact resistivity of the carbon paper were decreased linearly by impregnating the carbon fillers with phenol resins. The increase of carbon filler contents led to the improvement of electrical and thermal conductivity of the carbon paper. Also, the heating characteristics of the surface heating element were examined through the applied voltage of 1~5 V. With the applied voltage, it was confirmed that the surface heating element exhibited a maximum heating characteristic of about $125.01^{\circ}C$(5 V). These results were attributed to the formation of electrical networks by filled micropore between the carbon fibers, which led to the improvement of electrical and thermal properties of the carbon paper.

Flexible Planar Heater Comprising Ag Thin Film on Polyurethane Substrate (폴리우레탄 유연 기판을 이용한 Ag 박막형 유연 면상발열체 연구)

  • Seongyeol Lee;Dooho Choi
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.31 no.1
    • /
    • pp.29-34
    • /
    • 2024
  • The heating element utilizing the Joule heating generated when current flows through a conductor is widely researched and developed for various industrial applications such as moisture removal in automotive windshield, high-speed train windows, and solar panels. Recently, research utilizing heating elements with various nanostructures has been actively conducted to develop flexible heating elements capable of maintaining stable heating even under mechanical deformation conditions. In this study, flexible polyurethane possessing excellent flexibility was selected as the substrate, and silver (Ag) thin films with low electrical resistivity (1.6 μΩ-cm) were fabricated as the heating layer using magnetron sputtering. The 2D heating structure of the Ag thin films demonstrated excellent heating reproducibility, reaching 95% of the target temperature within 20 seconds. Furthermore, excellent heating characteristics were maintained even under mechanically deforming environments, exhibiting outstanding flexibility with less than a 3% increase in electrical resistance observed in repetitive bending tests (10,000 cycles, based on a curvature radius of 5 mm). This demonstrates that polyurethane/Ag planar heating structure bears promising potential as a flexible/wearable heating element for curved-shaped appliances and objects subjected to diverse stresses such as human body parts.

Design of Hot-water wit an Electric Instantaneous Water Heating Unit (분리형 전기순간가열기에 의한 온수 비데 설계)

  • 고석조;김창동
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.69-72
    • /
    • 2004
  • There are an electronic and a manual type in Bidet. The electronic bidet has some advantages. it supplies multiple functions and is up easily. However, it has frequent defects and a high price. The manual bidet is not need to supply electric and is cheaper than the electronic type. However, it is needed to supply hot water and is hard to set up. In order to solve these defects, this study designed a bidet heating unit using an electric instantaneous water heating method. To get a proper heating elements, experiments were performed about a Ni-Cr heater and a film heater.

  • PDF

Heat generation characteristics of the heating mortar according to repeated electricity supply (반복전기공급에 따른 발열모르타르의 발열 특성)

  • Kim, Young-Min;Lim, Chang-Min;Gwon, Hyeon-U;Lee, Gun-cheol
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.04a
    • /
    • pp.170-171
    • /
    • 2022
  • In recent years, due to the occurrence of traffic accidents caused by black ice in winter, the number of personal injuries is increasing rapidly. Black ice is a phenomenon that occurs like a thin layer of ice on the road surface. Accordingly, many developments of heat-generating concrete are being developed to remove ice by increasing the temperature by supplying constant electricity to places where black ice is likely to occur. These heating elements are being developed by mixing a conductive material represented by carbon nanotubes with concrete. However, research up to now has been focused on efficient temperature rise and derivation of the optimum mixing ratio, and the evaluation of maintaining heat generation performance during continuous repetition is insufficient. Therefore, in this study, a heating test specimen was manufactured and 50V power was repeatedly supplied to evaluate the heating characteristics.

  • PDF

Electrical Properties of Carbon Black Composites for Flexible Fiber Heating Element (유연한 섬유상 발열체용 카본블랙 복합소재의 전기적 특성)

  • Park, Ji-Yong;Lee, Jong-Dae
    • Journal of the Korean Applied Science and Technology
    • /
    • v.32 no.3
    • /
    • pp.405-411
    • /
    • 2015
  • Carbon composites for flexible fiber heating element were examined to improve the electrical conductivity in this study. Carbon composites using carbon black, denka black, super-c, super-p with/without CNF or dispersant such as BCS03 and Sikament-nn were prepared. Carbon composite slurry was coated on plane film and yarns(cotton, polyester) and the performances of prepared heating materials were investigated by checking electrical surface resistance, adhesion strength. The plane heating element using carbon black under natural drying condition($25^{\circ}C$) had better physical properties such as surface resistance(185.3 Ohm/sq) and adhesion strength(above 90%) than those of other carbon composite heating elements. From these results, polyester heating element coated by carbon black showed better electrical line resistance(33.2 kOhm/cm) than cotton heating element. Then, it was found that polyester heating element coated by carbon black with CNF(3 wt%) and BCS03(1 wt%) appeared best properties(0.604 kOhm/cm).

An experimental study of defrosting behaviors on the fin-tube heat exchanger with PTC heating sheet (PTC 전열시트를 사용한 핀-관 열교환기의 제상 특성에 관한 실험적 연구)

  • Jhee, S.;Lee, K.S.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.11 no.1
    • /
    • pp.147-155
    • /
    • 1999
  • In this work, the defrosting characteristics of PTC heating sheet used as a defrosting heat source of fin-tube heat exchanger in a refrigerator have been experimentally compared with those of conventional electric heater. It is found that the characteristics of water draining rate with defrosting time show smoothly oscillating pattern when PTC heating sheet is used, and the drained water is completely melted. The defrosting efficiency of the PTC heating sheet is about 75%, which represents about 25% higher than that of the electric heater. A reduction of defrosting time and an increase of defrosting efficiency may be obtained by improving the arrangement of heating elements of the heating sheet. It is shown that the defrosting time of PTC heating sheet increases linearly with the amount of frost, however the defrosting efficiency is nearly constant. In the application to the refrigerating system, one should notice the fact that the defrosting performance of PTC heating sheet may be defraded due to the repeated operations.

  • PDF

Thermal Characteristics of Hybrid Composites for Application to Surfboard (서프보드 적용을 위한 하이브리드 복합재료의 열적 특성)

  • Kim, Yun-Hae;Lee, Jin-Woo;Park, Chang-Wook;Park, Soo-Jeong
    • Journal of Ocean Engineering and Technology
    • /
    • v.28 no.4
    • /
    • pp.351-355
    • /
    • 2014
  • Today, carbon fibers are used as heating elements. Carbon fibers are generally used to reinforce composite materials because they are lightweight and have a high strength and modulus. Carbon fiber reinforced composite materials are used for aerospace, automobile, and wind turbine blade applications. This work explored the possibility of using carbon fiber reinforced composite materials as self heating materials. The temperatures of the carbon fiber reinforced composites were measured. These results verified that the carbon fiber reinforced composite materials could be used as heating elements. A glass fiber was laminated using various methods. The thermal characteristics of the composites were evaluated. This confirmed that the generation of heat varied according to the lamination thicknesses of the carbon fiber and glass fiber. As the number of carbon fiber laminations increased, the heat-generating temperature increased. In contrast, as the number of glass fiber laminations increased, the amount of heat decreased. The generation of heat and ability to remain warm could be controlled by controlling the carbon fiber and glass fiber laminations.

Turbulent Heat Transfer in Rough Concentric Annuli With Heating Condition of Constant Wal Heat Flux (일정벽면열유속의 가열조건의 갖는 거친 동심환형관내의 난류열전달)

  • 손유식
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.23 no.1
    • /
    • pp.54-61
    • /
    • 1999
  • The fully developed turbulent momentum and heat transfer induced by the roughness elements on the outer wall surfaces in concentric annuli are analytically studied on the basis of a modified turbu-lence model. The resulting momentum and heat transfer are discussed in terms of various parame-ters such as the radius ratio the roughness density Reynolds number and Prandtl number accord-ing to the heating condition. The study shows that certain artificial roughness elements may be used to enhance heat transfer rates with advantage from the overall efficiency point of view.

  • PDF

Joint Characteristics of the Nylon/Metal Sliding Machine Elements (나일론/금속 접합 마찰기계요소의 접합특성)

  • 장윤상
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.3
    • /
    • pp.125-132
    • /
    • 2003
  • The joint method and characteristics of MC nylon and metal are analyzed. Considering the productivity and economics, two materials are joined with the process of turning, knurling, and induction heating. The joint strength is determined by adhesion of the melted nylon, the size of knurl, and the interference from the difference of the diameters. The adhesion strength of the melted nylon is measured. The effects of the knurl size and diameter difference are analyzed with the statistical methods. Finally the joint strength is analyzed in the environments of low, room, and high temperature. Based on this study, the nylon/metal material is expected to be widely used as the sliding machine elements with good lubrication and strength properties.