DOI QR코드

DOI QR Code

Flexible Planar Heater Comprising Ag Thin Film on Polyurethane Substrate

폴리우레탄 유연 기판을 이용한 Ag 박막형 유연 면상발열체 연구

  • Seongyeol Lee (School of Advanced Materials Engineering, Dong-Eui University) ;
  • Dooho Choi (School of Semiconductor & Electronic Engineering, Gachon University)
  • 이성열 (동의대학교 신소재공학부) ;
  • 최두호 (가천대학교 반도체전자공학부)
  • Received : 2024.02.20
  • Accepted : 2024.03.09
  • Published : 2024.03.30

Abstract

The heating element utilizing the Joule heating generated when current flows through a conductor is widely researched and developed for various industrial applications such as moisture removal in automotive windshield, high-speed train windows, and solar panels. Recently, research utilizing heating elements with various nanostructures has been actively conducted to develop flexible heating elements capable of maintaining stable heating even under mechanical deformation conditions. In this study, flexible polyurethane possessing excellent flexibility was selected as the substrate, and silver (Ag) thin films with low electrical resistivity (1.6 μΩ-cm) were fabricated as the heating layer using magnetron sputtering. The 2D heating structure of the Ag thin films demonstrated excellent heating reproducibility, reaching 95% of the target temperature within 20 seconds. Furthermore, excellent heating characteristics were maintained even under mechanically deforming environments, exhibiting outstanding flexibility with less than a 3% increase in electrical resistance observed in repetitive bending tests (10,000 cycles, based on a curvature radius of 5 mm). This demonstrates that polyurethane/Ag planar heating structure bears promising potential as a flexible/wearable heating element for curved-shaped appliances and objects subjected to diverse stresses such as human body parts.

전류가 전도체를 통과할 때 발생하는 줄 열을 이용한 발열체는 자동차 창유리, 고속열차 창유리 및 태양전지와 같은 다양한 산업 분야에서 수분 제거 등을 위해 널리 연구되고 개발되고 있고, 최근에는 기계적 변형 조건 하에서도 안정적인 가열을 유지할 수 있는 유연 발열체를 개발하기 위하여 여러 나노 구조의 발열체를 이용한 연구가 활발하게 진행중이다. 본 연구에서는 유연성이 우수한 폴리우레탄을 기판으로 선정하고 마그네트론 스퍼터링을 이용하여 낮은 전기비저항(1.6 μΩ-cm)을 가지는 은 (Ag) 박막을 형성하여 발열층으로 이용한 연구를 진행하였다. 2D 박막구조에서의 전면발열에 의하여 열응답속도가 매우 높아 목표 온도의 95%까지 20초 이내에 도달하였으며 우수한 발열재현성을 보여주었다. 또한 기계적 변형이 가해지는 환경에서도 우수한 발열특성이 유지되었으며 반복적인 굽힘 테스트 (10,000회, 곡률반경 5 mm 기준)에서도 3% 이내의 전기저항 증가만이 발생할 정도로 우수한 유연성을 보유하여, 폴리우레탄/은 구조의 면상발열체는 굴곡진 형태를 가진 다양한 기기에서부터 인체분위와 같이 다양한 응력이 가해지는 환경에서 사용할 수 있는 플렉서블/웨어러블 면상발열체로의 적용이 매우 유망하다는 것을 보여준다. 또한 증착된 은 박막 발열 층 구조는 다양한 목적을 위한 기능을 추가하여 다양한 분야에서 사용할 수 있는 플렉서블/웨어러블 발열체로서의 적용 가능성을 보여줍니다.

Keywords

Acknowledgement

본 논문은 한국연구재단 중견연구자지원사업 (NRF-2022R1A2B5B01001938) 연구과제로 수행되었습니다.

References

  1. D. Kim and D. Choi, "Ultra-thin aluminum thin films deposited by DC magnetron sputtering for the applications in flexible transparent electrodes", J. Microelectron. Packag. Soc., 25(2), 19 (2018).
  2. G. Bang and D. Choi, "Aluminum based ZnO/Al/ZnO flexible Transparent Electrodes Fabricated by Magnetron sputtering", J. Microelectron. Packag. Soc., 25(2), 31-34 (2018).
  3. S. Im, S. Kim, S. Kim, S. Kim, and J. Kim, "A Study on Improving Electrical Conductivity for Conducting Polymers and their Applications to Transparent Electrodes", Appl. Chem. Eng., 26(6), 640 (2015).
  4. S. Bae, H. Kim, Y. Lee, X. Xu, J. S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. Ri Kim, Y. I. Song, Y. J. Kim, K. S. Kim, B. Ozyilmaz, J. H. Ahn, B. H. Hong, and S. Iijima, "Rollto-roll production of 30-inch graphene films for transparent electrodes", Nat. Nanotech., 5(8), 574 (2010).
  5. K. Wang, J. J. Chen, Z. M. Zeng, J. Tarr, W. L. Zhou, Y. Zhang, Y. F. Yan, C. S. Jiang, J. Pern, and A. Mascarenhas, "Synthesis and photovoltaic effect of vertically aligned ZnO/ZnS core/shell nanowire arrays", Appl. Phys. Lett., 96(12), 123105 (2010).
  6. J. Du, S. Pei, L. Ma, and H. M. Cheng, "Carbon Nanotube-and Graphene-Based Transparent Conductive Films for Optoelectronic Devices", Adv. Mater., 26(13), 1958 (2014).
  7. Y. Wang, Z. Li, J. Xiao, "Stretchable Thin Film Materials: Fabrication, Application, and Mechanics", J. Electron. Packag., 138(2), 020801 (2016).
  8. T. Cheng, Y. Zhang, W. Y. Lai, and W. Huang, "Stretchable Thin-Film Electrodes for Flexible Electronics with High Deformability and Stretchability", Adv. Mater., 27(22), 3349 (2015).
  9. H. Chen, S. Tang, W. Tian, Q. Xue, H. Wang, and W. Che, "Direct Sputtering on PDMS for Investigation of Stretchable and Transparent Microstrip Line", IEEE, Packag. Manufact. Tech., 9(9), 1741 (2019).
  10. R. Sami, R. Sanjines, C. Pulgarin, and J. Kiwi, "Microstructure of Cu-Ag Uniform Nanoparticulate Films on Polyurethane 3D Catheters: Surface Properties", ACS Appl. Mater. Interfaces, 8(1), 56 (2016).
  11. W. Kaczorowski, D. Batory, P. Niedzielski, "Application of microwave/radio frequency and radio frequency/ magnetron sputtering techniques in polyurethane surface modification", Achievements in Mater. Manufact. Eng., 37(2), 286 (2009).
  12. T. Lee, D. Kim, M. Suk, G. Bang, J. Choi, J. S. Bae, J. H. Yoon, W. J. Moon, and D. Choi, "Regulating Ag Wettability via Modulating Surface Stoichiometry of ZnO Substrates for Flexible Electronics", Adv. Funct. Mater., 31(36), 2104372 (2021).
  13. T. T. B. Vo, J. Lim, S. H. Joo, H. Kim, T. Lee, J. S. Bae, E. Jeong, M. S. Kwon, J. Yun, and D. Choi, "Smooth, Chemically Altered Nucleating Platform for Abrupt Performance Enhancement of Ultrathin Cu-Layer-Based Transparent Electrodes", Nano Lett., 23(14), 6528 (2023).
  14. D. Josell, S. H Brongersma, Z. Tokei, "Size-Dependent Resistivity in Nanoscale Interconnects", Annu. Rev. Mater. Res., 39(1), 231 (2009).
  15. D. Gall, "Electron mean free path in elemental metals", J. Appl. Phys., 119(8), 085101 (2016).
  16. S. Hong, H. Lee, J. Lee, J. Kwon, S. Han, Y. D. Suh, H. Cho, J. Shin, J. Yeo, S. H. Ko, "Highly Stretchable and Transparent Metal Nanowire Heater for Wearable Electronics Applications", Adv. Mater., 27(32), 4744 (2015).
  17. V. V. Tran, G. Jeong, E. Wi, D. Lee, M. Chang, "Design and fabrication of ultrathin nanoporous donor-acceptor copolymer-based organic field-effect transistors for enhanced VOC sensing performance", ACS Appl. Mater. Interfaces, 15(17), 21270-21283 (2023). https://doi.org/10.1021/acsami.3c00105
  18. S. Y. Park and S. Y. Lee, "Analysis of the amorphous SiInZnO/Ag/amorphous SiInZnO multilayer structure as a next-generation transparent electrode using essential macleod program simulation", Carbon Letters, 33, 1231-1239 (2023). https://doi.org/10.1007/s42823-023-00492-5
  19. J. Park, J. Shin and H. Yoo, "Heterostructure-Based Optoelectronic Neuromorphic Devices", Electronics, 13(6), 1076 (2024).
  20. G. Lee, I. T. Kim and J. Hur, "Highly conductive and robust telluride-carbon hybrid matrix for enhanced copper diphosphide anode in Li-ion batteries", J. Alloys Comp., 950, 169914 (2023).
  21. H. S. Nguyen, T. A. Nguyen, T. L. A. Luu, T. P. Nguyen, T. C. Nguyen, N. P. T. Nguyen, T. B. Nguyen, T. T. H. Nguyen, H. L. Nguyen, I. T. Kim, and C. T. Nguyen, "Ag-decorated novel h'-WO3 nanostructures for sustainable applications", Ceram. Int., 48(13), 18687-18698 (2022). https://doi.org/10.1016/j.ceramint.2022.03.142