• Title/Summary/Keyword: heat-killed cells

Search Result 57, Processing Time 0.019 seconds

Neuroprotective Effects of Heat-Killed Levilactobacillus brevis KU15152 on H2O2-Induced Oxidative Stress

  • Hyun-Ji Bock;Na-Kyoung Lee;Hyun-Dong Paik
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.9
    • /
    • pp.1189-1196
    • /
    • 2023
  • This study proposed to demonstrate the neuroprotective effects of heat-killed Levilactobacillus brevis KU15152. Heat-killed L. brevis KU15152 showed antioxidant activity similar to that of Lacticaseibacillus rhamnosus GG, in terms of radical scavenging activity. To evaluate the neuroprotective effects, conditioned medium (CM) obtained by incubating heat-killed bacteria in intestinal cells (HT-29) was used through gut-brain axis. CM from L. brevis KU15152 protected neuroblastoma cells (SH-SY5Y) against H2O2-induced oxidative stress. Pretreatment with CM significantly alleviated the morphological changes induced by H2O2. Heat-killed L. brevis KU15152 showed an increased brain-derived neurotrophic factor (BDNF) expression in HT-29 cells. L. brevis KU15152-CM remarkably downregulated the Bax/Bcl-2 ratio, while upregulating the expression of BDNF and tyrosine hydroxylase (TH) in SH-SY5Y cells. Furthermore, L. brevis KU15152-CM reduced caspase-3 activity following H2O2 treatment. In conclusion, L. brevis KU15152 can be potentially used as food materials to avoid neurodegenerative diseases.

EFFECTS OF HEAT-KILLED AND SONIC EXTRACTS OF MICROORGANISM ON CULTURED CELLS (세균액 및 세균단백질 추출물이 배양 세포에 미치는 영향)

  • Yu, Young-Dae;Im, Mi-Kyung
    • Restorative Dentistry and Endodontics
    • /
    • v.25 no.4
    • /
    • pp.606-618
    • /
    • 2000
  • Dental pulp infection is most commonly caused by extensive dental caries, and some bacterial species invade root canals; bacterial components and products are thought to be associated with the pathogenesis of periapical periodontitis. A principle driving force behind pulpal disease response appears to lie in the host immune system's to bacteria and their products. We examined the production of interleukin $1{\beta}$ (IL-$1{\beta}$) and tumor necrosis factor ${\alpha}$(TNF-${\alpha}$) from human peripheral mononuclear cells, lymphocytes and monocytes stimulated by heat-killed Acitnobacillus actinomycetemcomitans (ATCC 29523), Porphyromonas gingivalis (ATCC 33277) and Prevotella intermedia (ATCC 25611), and also by their sonicated bacterial extracts (SBE), respectively. The effects of three strains of heat-killed bacteria and their SBEs on the morphology of cultured blood cell lines HL-60 (KCLB 10240) and J774A.1 (KCLB 40067) were observed under the inverted microscope. Ultrastructural changes of J774A.1 exposed to heat-killed P. intermedia and its SBE were investigated using transmission electron microscopy. Production of IL-$1{\beta}$ was reduced in human peripheral mononuclear cells after stimulation by sonic bacterial extracts of A. actinomycetemcomitans, P. gingivalis, and P. intermedia. Heat-killed and sonic extract of P. gingivalis inhibited the production of TNF-${\alpha}$ in peripheral mononuclear cells. Production of TNF-${\alpha}$ was inhibited in peripheral monocytes after stimulation by sonic extracts of A. actinomycetemcomitans, P. gingivalis, and P. intermedia. HL-60 and J 774A.1 cells showed granular degeneration after treatment with heat-killed and sonic extracts of A. actinomycetemcomitans, P. gingivalis, and P. intermedia Chromatin margination and shrinkage were observed in 774A.1 treated with heat-killed P. intermedia. Cell wall structure and organelles were destroyed and vacuoles were formed in cytoplasm in J774A.1 treated with P. intermedia sonic extract. These results suggest that A actinomycetemcomitans, P gingivalis and P intermedia may have an important role in the formation and progression of pulpal diseases via both modulation of production of IL-$1{\beta}$ and TNF-${\alpha}$ from blood mononuclear cells and cytopathic effects.

  • PDF

Probiotic and Antioxidant Properties of Novel Lactobacillus brevis KCCM 12203P Isolated from Kimchi and Evaluation of Immune-Stimulating Activities of Its Heat-Killed Cells in RAW 264.7 Cells

  • Song, Myung Wook;Jang, Hye Ji;Kim, Kee-Tae;Paik, Hyun-Dong
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.12
    • /
    • pp.1894-1903
    • /
    • 2019
  • The purpose of this study was to determine the probiotic properties of Lactobacillus brevis KCCM 12203P isolated from the Korean traditional food kimchi and to evaluate the antioxidative activity and immune-stimulating potential of its heat-killed cells to improve their bio-functional activities. Lactobacillus rhamnosus GG, which is a representative commercial probiotic, was used as a comparative sample. Regarding probiotic properties, L. brevis KCCM 12203P was resistant to 0.3% pepsin with a pH of 2.5 for 3 h and 0.3% oxgall solution for 24 h, having approximately a 99% survival rate. It also showed strong adhesion activity (6.84%) onto HT-29 cells and did not produce β-glucuronidase but produced high quantities of leucine arylamidase, valine arylamidase, β-galactosidase, and N-acetyl-β-glucosaminidase. For antioxidant activity, it appeared that viable cells had higher radical scavenging activity in the 2,2-diphenyl-1-picryl-hydrazyl (DPPH) assay, while in the 2-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid (ABTS) assay, heat-killed cells had higher antioxidant activity. Additionally, L. brevis KCCM 12203P showed higher lipid oxidation inhibition ability than L. rhamnosus GG; however, there was no significant difference (p < 0.05) between heat-killed cells and control cells. Furthermore, heat-killed L. brevis KCCM 12203P activated RAW 264.7 macrophage cells without cytotoxicity at a concentration lower than 108 CFU/ml and promoted higher gene expression levels of inducible nitric oxide synthase, interleukin-1β, and interleukin-6 than L. rhamnosus GG. These results suggest that novel L. brevis KCCM 12203P could be used as a probiotic or applied to functional food processing and pharmaceutical fields for immunocompromised people.

Lactobacillus brevis KB290 Enhances IL-8 Secretion by Vibrio parahaemolyticus-Infected Caco-2 Cells

  • Yakabe, Takafumi;Shimohata, Takaaki;Takahashi, Akira
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.1
    • /
    • pp.118-124
    • /
    • 2013
  • Vibrio parahaemolyticus in uncooked seafood causes acute gastroenteritis. The microorganism has two sets of type III secretion systems and two hemolysins. When it injects its effector proteins into a host cell via type III secretion system 1, one of the type III secretion systems induces secretion of interleukin (IL)-8, a proinflammatory chemokine, through the phosphorylation of ERK 1/2 and p38 MAPK. Although probiotics have beneficial effects on hosts and can help control some infectious diseases, there is little research on the efficacy of probiotics in V. parahaemolyticus infection. Here we pretreated V. parahaemolyticus-infected human intestinal epithelial cells with heat-killed Lactobacillus brevis KB290, a probiotic isolated from fermented vegetables (traditional Japanese pickles) and utilized as an ingredient of beverages and supplementary foods, and demonstrated its efficacy in enhancing IL-8 secretion from V. parahaemolyticus-infected cells. Among the three heat-killed lactic acid bacterial strains we tested, L. brevis KB290 induced the highest level of IL-8 secretions in the infected cells. Relative to control cells (Caco-2 cells pretreated with PBS), V. parahaemolyticus-infected Caco-2 cells pretreated with heat-killed L. brevis KB290 secreted IL-8 earlier, although concentrations were similar 450min after infection. Heat-killed L. brevis KB290 pretreatment also induced earlier ERK 1/2 phosphorylation, greater p38 MAPK phosphorylation, and enhanced IL-8 mRNA expression. Heat-killed L. brevis KB290 accelerated IL-8 secretion, a host cell immune response, in V. parahaemolyticus-infected cells. We consider this to be beneficial because IL-8 plays an important defensive role against infection, and would contribute to the repair of injured epithelial cells.

Assessment of cell adhesion, cell surface hydrophobicity, autoaggregation, and lipopolysaccharide-binding properties of live and heat-killed Lactobacillus acidophilus CBT LA1 (락토바실러스 아시도필러스 CBT LA1 생균과 사균체의 세포부착력, 자가응집력, 소수성 상호작용력, LPS 결합력에 대한 평가)

  • Shin, Joo-Hyun;Lee, Joong-Su;Seo, Jae-Gu
    • Korean Journal of Microbiology
    • /
    • v.51 no.3
    • /
    • pp.241-248
    • /
    • 2015
  • Although studies on probiotics have been performed mostly with viable microbes, the beneficial functions of dead or heat-killed form of probiotic strains have also been examined. In this study, live and heat-killed forms of Lactobacillus acidophilus CBT LA1 were investigated in vitro and in vivo to evaluate the properties necessary for gut barrier protection. Cell surface hydrophobicity (CSH), autoaggregation (AA), cell adhesion, and lipopolysaccharide (LPS)-binding properties were evaluated. In addition, the suppressive effect on LPS-induced interleukin (IL)-8 expression was investigated in HT-29 cells. To identify optimal conditions for CBT LA1 to adhere to HT-29 cells, CBT LA1 cells were heat-treated at 80, 85, 90, 95, 100, or $121^{\circ}C$ for 10 min; cells treated at $80^{\circ}C$ for 10 min showed the highest adhesion. Heat-killed bacteria at $80^{\circ}C$ showed higher levels of LPS-binding, CSH, AA, adhesion to HT-29, and suppression of IL-8 expression than did live CBT LA1. In vivo imaging was performed to evaluate the ability of live or heat-killed CBT LA1 to remove LPS from the intestine in a rat model of infection. At 16 h after infection, fluorescence from FITC-conjugated LPS had mostly disappeared from the intestine of the rats administered with live or heat-killed CBT LA1; the effect was greater with heat-killed CBT LA1 at $80^{\circ}C$. These results suggest that heat-killed CBT LA1 as well as its live form can be applied as a pharmabiotic for protection of the gut barrier.

Immunostimulatory Effect of Heat-Killed Probiotics on RAW264.7 Macrophages

  • Noh, Hye-Ji;Park, Jung Min;Kwon, Yoo Jin;Kim, Kyunghwan;Park, Sung Yurb;Kim, Insu;Lim, Jong Hyun;Kim, Byoung Kook;Kim, Byung-Yong
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.5
    • /
    • pp.638-644
    • /
    • 2022
  • Probiotics modulate the gut microbiota, which in turn regulate immune responses to maintain balanced immune homeostasis in the host. However, it is unclear how probiotic bacteria regulate immune responses. In this study we investigated the immunomodulatory effects of heat-killed probiotics, including Lactiplantibacillus plantarum KC3 (LP3), Lactiplantibacillus plantarum CKDB008 (LP8), and Limosilactobacillus fermentum SRK414 (LF4), via phagocytosis, nitric oxide (NO), and pro-inflammatory cytokine production in macrophages. We thus found that heat-killed LP8 could promote the clearance of foreign pathogens by enhancing the phagocytosis of macrophages. Treatment with heat-killed LP8 induced the production of NO and pro-inflammatory cytokines, including TNF-α, IL-6, and IL-1β. In addition, heat-killed LP8 suppressed the production of NO and cytokines in LPS-induced RAW264.7 cells, suggesting that heat-killed LP8 exerts immunomodulatory effects depending on the host condition. In sum, these results indicate that heat-killed LP8 possesses the potential for immune modulation while providing a molecular basis for the development of functional probiotics prepared from inactivated bacterial cells.

Maturation and migration of dendritic cells upon stimulation with heat-killed tumor cells

  • Kim, Hyo-Jeong;Yoon, Taek-Joon;Lee, Sung-Won;Yun, Dae-Sun;Kim, Ji-Yeon;Shin, Kwang-Soon;Park, Se-Ho;Hong, Seok-Mann
    • Animal cells and systems
    • /
    • v.16 no.3
    • /
    • pp.215-223
    • /
    • 2012
  • Recently it has been reported that immunization with heat-killed tumor cells (HK vaccine) induces anti-tumor immune responses in mice. To investigate how HKvaccine elicits anti-tumor specific adaptive immunity, we examined the effect of HK vaccination on innate immune cells such as dendritic cells (DCs), which are essential for the generation of adaptive immunity. Upon stimulation with HK vaccine, DCs matured to promote not only the upregulation of co-stimulatory molecules but also secretion of cytokine IL12. Furthermore, HK vaccine-treated DCs migrated more efficiently to draining lymph nodes compared with untreated ones. Taken together, HK vaccine can be useful as an adjuvant to activate DCs for anti-tumor immune responses.

Heat-Killed and Live Enterococcus faecalis Attenuates Enlarged Prostate in an Animal Model of Benign Prostatic Hyperplasia

  • Choi, Young-Jin;Fan, Meiqi;Tang, Yujiao;Iwasa, Masahiro;Han, Kwon-Il;Lee, Hongchan;Hwang, Ji-Young;Lee, Bokyung;Kim, Eun-Kyung
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.8
    • /
    • pp.1134-1143
    • /
    • 2021
  • In the present study, we investigated the inhibitory effect of heat-killed Enterococcus faecalis (E. faecalis) and live E. faecalis on benign prostatic hyperplasia (BPH). The BPH rat model was established by administering male rats with testosterone propionate (TP, 5 mg/kg, in corn oil) via subcutaneous injections daily for four weeks after castration. The rats were divided into five groups: Con, corn oil-injected (s.c.) + DW administration; BPH, TP (5 mg/kg, s.c.) + DW administration; BPH+K_EF, TP (5 mg/kg, s.c.) + heat-killed E. faecalis (7.5 × 1012 CFU/g, 2.21 mg/kg) administration; BPH+L_EF, TP (5 mg/kg, s.c.) + live E. faecalis (1 × 1011 CFU/g, 166 mg/kg) administration; BPH+Fi, TP (5 mg/kg, s.c.) + finasteride (1 mg/kg) administration. In both of BPH+K_EF and BPH+L_EF groups, the prostate weight decreased and histological changes due to TP treatment recovered to the level of the Con group. Both of these groups also showed regulation of androgen-signaling factors, growth factors, and apoptosis-related factors in prostate tissue. E. faecalis exhibited an inhibitory effect on benign prostatic hyperplasia, and even heat-killed E. faecalis showed similar efficacy on the live cells in the BPH rat model. As the first investigation into the effect of heat-killed and live E. faecalis on BPH, our study suggests that heat-killed E. faecalis might be a food additive candidate for use in various foods, regardless of heat processing.

In Vitro Immunopotentiating Activities of Cellular Fractions of Lactic Acid Bacteria Isolated from Kimchi and Bifidobacteria

  • Hur, Haeng-Jeon;Lee, Ki-Won;Kim, Hae-Yeong;Chung, Dae-Kyun;Lee, Hyong-Joo
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.5
    • /
    • pp.661-666
    • /
    • 2006
  • The present study represents the investigation of in vitro immunopotentiating activities of cellular fractions of major lactic acid bacteria found in kimchi (KLAB) and bifidobacteria. The macrophage cells, RAW264.7, were stimulated with heat-killed whole-cell, cell-wall, and cytoplasmic fractions of four strains of KLAB (Leuconostoc mesenteroides, Leuconostoc citreum, Lactobacillus plantarum, and Lactobacillus sake) and two strains of bifidobacteria (Bifidobacterium longum and Bifidobacterium lactis) each, and then the production of nitric oxide (NO) and cytokines including tumor necrosis $factor-\alpha\;(TNF-\alpha)$ and interleukin-6 (IL-6) was measured by Griess and ELISA assays, respectively. Heat-killed wholecell and cell-wall fractions-but not the cytoplasmic fraction-from all strains of KLAB significantly increased the production of NO in RAW264.7 cells, and all fractions from bifidobacteria exerted similar effects. In the production of $TNF-\alpha$, heat-killed whole-cell and cell-wall fractions of L. plantarum showed the strongest effect, followed by L. sake and B. lactis, whereas other KLAB fractions did not exert any effect. In the production of IL-6, only whole-cell and cell-wall fractions of L. plantarum were effective. These results, taken together, indicate that L. plantarum might playa critical role in the immunopotentiating activities of kimchi.

Anti-Inflammatory Potential of Probiotic Strain Weissella cibaria JW15 Isolated from Kimchi through Regulation of NF-κB and MAPKs Pathways in LPS-Induced RAW 264.7 Cells

  • Yu, Hyung-Seok;Lee, Na-Kyoung;Choi, Ae-Jin;Choe, Jeong-Sook;Bae, Chun Ho;Paik, Hyun-Dong
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.7
    • /
    • pp.1022-1032
    • /
    • 2019
  • Probiotics are known to provide the host with immune-modulatory effects and are therefore of remarkable interest for therapeutic and prophylactic applications against various disorders, including inflammatory diseases. Weissella cibaria JW15 (JW15) has been reported to possess probiotic and antioxidant properties. However, the effect of JW15 on inflammatory responses has not yet been reported. Therefore, the objective of the current study was to evaluate the anti-inflammatory potential of JW15 against lipopolysaccharide (LPS) stimulation. The production of pro-inflammatory factors and the cellular signaling pathways following treatment with heat-killed JW15 was examined in LPS-induced RAW 264.7 cells. Treatment with heat-killed JW15 decreased nitric oxide and prostaglandin $E_2$ production via down-regulation of the inducible nitric oxide synthase and cyclooxygenase-2. In addition, treatment with heat-killed JW15 suppressed the expression of pro-inflammatory cytokines, interleukin $(IL)-1{\beta}$, IL-6, and tumor necrosis factor-${\alpha}$. The anti-inflammatory properties of treating with heat-killed JW15 were associated with mitogen-activated protein kinase signaling pathway-mediated suppression of nuclear factor-${\kappa}B$. These results indicated that JW15 possesses anti-inflammatory potential and provide a molecular basis regarding the development of functional probiotic products.