• Title/Summary/Keyword: heat-damage

Search Result 981, Processing Time 0.026 seconds

A Literatural study of the acupuncture on Dudurugi(두드러기) (두드러기의 원인 증상 및 침구치료에 관한 문헌적 연구)

  • Hwang Bae-Youn;Hong Seung-Won;Lee Sang-Ryong
    • Korean Journal of Acupuncture
    • /
    • v.20 no.2
    • /
    • pp.101-120
    • /
    • 2003
  • This study is performed to investigate the cause, symptom and acupuncture on Dudurugi through the literature of oriental medicine. The findings of this study are as follows: 1. Dudurugi is caused by exogenous pathogenic factors(wind, heat, cold, damp), sthenic inter damage factors(heat accumulated in the intestine and stomach, blood-heat, blood-stasia) and asthenia inter damage factors(asthenia of the spleen and stomach, blood-asthenia, asthenia of energy-blood, yin-asthenia and blood-dryness, yan-asthenia and energy-asthenia). 2. The symptom of Dudurugi is appeared in the skin and its surface is processed apparently or itch. 3. The treatment of Dudurugi was used by expelling the wind with removing pathogen. 4. In the treatment of Dudurugi, The su-yangmyong taejang-kyong of 12 merdians was mainly used and, the kokchi(LI11) of acupoints was most used in the acupuncture and moxibustion. 5. In the treatment of Dudurugi, acupoints of tok-maek and chok-t'aeyangkyong were mainly used in the case of showing symptoms caused by exogenous pathogenic factors and, acupoints of chok-t'aemkyong were mainly used in the case of showing symptoms caused by damp-heat accumulated in the intestine and stomach. When there were any other symptoms accompanied, other acupoints were more used.

  • PDF

Examination of the Cause of Damage to Capacitors for Home Appliances and Analysis of the Heat Generation Mechanism (가전용 커패시터의 소손원인 규명 및 발열 메커니즘 해석)

  • Park, Hyung-Ki;Choi, Chung-Seog
    • Journal of the Korean Society of Safety
    • /
    • v.26 no.6
    • /
    • pp.13-19
    • /
    • 2011
  • The purpose of this study is to examine the cause of damage to electrolytic capacitors and to present the heat generation mechanism in order to prevent the occurrence of similar problems. From the analysis results of electrolytic capacitors collected from accident sites, the fire causing area can be limited to the primary power supply for the initial accident. From the tests performed by applying overvoltage, surge, etc., it is thought that the fuse, varistor, etc., are not directly related to the accidents that occurred. The analysis of the characteristics using a switching regulator showed that the charge and discharge characteristics fell short of standard values. In addition, it is thought that heated electrolytic capacitors caused thermal stress to nearby resistances, elements, etc. It can be seen that the heat generation is governed by the over-ripple current, application of AC overvoltage, surge input, internal temperature increase, defective airtightness, etc. Therefore, when designing an electrolytic capacitor, it is necessary to comprehensively consider the correct polarity arrangement, appropriate voltage application, correct connection of equivalent series resistance(ESR) and equivalent series inductance(SEL), rapid charge and discharge control, sufficient margin of dielectric tangent, etc.

The present state of natural disaster caused by extreme heat in the Korea Peninsula (폭염으로 인한 한반도 자연재해 현황)

  • Kim, Eun-Byul;Park, Jong-Kil;Kim, Baek-Jo
    • 한국방재학회:학술대회논문집
    • /
    • 2007.02a
    • /
    • pp.323-326
    • /
    • 2007
  • Recently, occurrence frequency of natural disasters decrease but scale of damage increase remarkably by the Climate change due to global warming. Especially, extreme heat become more critical weather problem in the Korean Peninsula. But, we don't have exact threshold about extreme heat. Extreme heat does not classify into natural disaster. Therefore, we have compared death count of the natural disaster with the one of extreme heat at Seoul, Korea. As a result, the number of death by extreme heat don't smaller than one by the natural disasters and we knew extreme heat have also to consider as natural disaster.

  • PDF

A cumulative damage model for extremely low cycle fatigue cracking in steel structure

  • Huanga, Xuewei;Zhao, Jun
    • Structural Engineering and Mechanics
    • /
    • v.62 no.2
    • /
    • pp.225-236
    • /
    • 2017
  • The purpose of this work is to predict ductile fracture of structural steel under extremely low cyclic loading experienced in earthquake. A cumulative damage model is proposed on the basis of an existing damage model originally aiming to predict fracture under monotonic loading. The cumulative damage model assumes that damage does not grow when stress triaxiality is below a threshold and fracture occurs when accumulated damage reach unit. The model was implemented in ABAQUS software. The cumulative damage model parameters for steel base metal, weld metal and heat affected zone were calibrated, respectively, through testing and finite element analyses of notched coupon specimens. The damage evolution law in the notched coupon specimens under different loads was compared. Finally, in order to examine the engineering applicability of the proposed model, the fracture performance of beam-column welded joints reported by previous researches was analyzed based on the cumulative damage model. The analysis results show that the cumulative damage model is able to successfully predict the cracking location, fracture process, the crack initiation life, and the total fatigue life of the joints.

The Analysis of Student's Acts within Limits When Encountering Natural Disasters caused by the Degree of Environmental Sensibility of School Facilities according to Natural Disaster Damage: Focusing on High-schools in Seoul Metropolitan Area (재해시 학교시설의 환경적 지각 정도에 따른 학생의 활동제한의 분석: 수도권 고등학교를 중심으로)

  • Min, Chang-Kee
    • Journal of the Korean Institute of Educational Facilities
    • /
    • v.13 no.4
    • /
    • pp.31-42
    • /
    • 2006
  • This study is about an analysis of the relation between the degree of cognition of student's acts within limits when coping with several types of disaster and the degree of cognition of damage by disasters in the method of multiple regression analysis. The dependent variable is the degree of cognition of student's acts within limits and the independent variable is the degree of cognition of damage by disasters such as heavy snow, typhoon, heavy rain, heat, and yellow sand. A survey of graduates of metropolitan area high-schools has found that there are no difference between girls and boys of the degree of cognition of student's acts within limits when coping with disasters. This study finds that the independent variable, which are playgrounds, animals and plants, streets and roads, altitude and incline, gives positive effect to the degree of cognition of student's acts within limits when coping with typhoon or heavy rain in order. The study also finds that the degree of cognition of student's acts within limits when coping with heavy snow is affected positively by streets and roads, playgrounds, altitude and incline in order. It also shows that there are factors that has an effect to the degree of cognition of student's acts within limits when coping with yellow sand and heat. This study proposes suggestions to facility plans based on these facts discovered.

Impact Assessment of the Damage by a Pool Fire in Yard Storage Facilities of a Container Terminal (컨테이너 터미널 옥외저장소에서의 액면화재에 대한 피해영향 평가)

  • Hwang, Man Woong;Lee, Ik Mo;Hwang, Yong Woo;Chun, Young Woo
    • Journal of Korean Society of Disaster and Security
    • /
    • v.9 no.2
    • /
    • pp.33-42
    • /
    • 2016
  • Domestic harbor yard storage facilities are a place specifically located in a container terminal for import and export of packaged dangerous goods, and due to the recent relaxed criteria for the secured open area, concerns for the extended damage upon accidents are increasing. In this study, the impact of damages by radiant heat was analyzed through a simulation of a pool fire caused by the leakage of flammable liquids from a tank container. As a result, it was analyzed that the distance of radiant heat according to threshold damage levels was beyond the current criteria of the secured open area, and the structural damage of adjacent containers could happen within a very short time if they were exposed to the early pool fire continuously. It is considered that this study will be helpful in preparing the proper criteria for the secured open area between yard storage facilities in a container terminal.

CSPACE for a simulation of core damage progression during severe accidents

  • Song, JinHo;Son, Dong-Gun;Bae, JunHo;Bae, Sung Won;Ha, KwangSoon;Chung, Bub-Dong;Choi, YuJung
    • Nuclear Engineering and Technology
    • /
    • v.53 no.12
    • /
    • pp.3990-4002
    • /
    • 2021
  • CSPACE (Core meltdown, Safety and Performance Analysis CodE for nuclear power plants) for a simulation of severe accident progression in a Pressurized Water Reactor (PWR) is developed by coupling of verified system thermal hydraulic code of SPACE (Safety and Performance Analysis CodE for nuclear power plants) and core damage progression code of COMPASS (Core Meltdown Progression Accident Simulation Software). SPACE is responsible for the description of fluid state in nuclear system nodes, while COMPASS is responsible for the prediction of thermal and mechanical responses of core fuels and reactor vessel heat structures. New heat transfer models to each phase of the fluid, flow blockage, corium behavior in the lower head are added to COMPASS. Then, an interface module for the data transfer between two codes was developed to enable coupling. An implicit coupling scheme of wall heat transfer was applied to prevent fluid temperature oscillation. To validate the performance of newly developed code CSPACE, we analyzed typical severe accident scenarios for OPR1000 (Optimized Power Reactor 1000), which were initiated from large break loss of coolant accident, small break loss of coolant accident, and station black out accident. The results including thermal hydraulic behavior of RCS, core damage progression, hydrogen generation, corium behavior in the lower head, reactor vessel failure were reasonable and consistent. We demonstrate that CSPACE provides a good platform for the prediction of severe accident progression by detailed review of analysis results and a qualitative comparison with the results of previous MELCOR analysis.

Silicon Wafering Process and Fine Grinding Process Induced Residual Mechanical Damage (반도체 실리콘의 웨이퍼링 및 정밀연삭공정후 잔류한 기계 적 손상에 관한 연구)

  • O, Han-Seok;Lee, Hong-Rim
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.6
    • /
    • pp.145-154
    • /
    • 2002
  • CMP (Chemical mechanical polishing) process was used to control the fine grinding process induced mechanical damage of Cz Silicon wafer. Characterization of mechanical damage was carried out using Nomarski microscope, magic mirror and also using angle lapping and lifetime scanner evaluation after heat treatment. Magic mirror and lifetime scanner were very useful for the residual damage pattern characterization and CMP process was effective on the reduction of fine grinding induced mechanical damage.

Evaluation of the Corrosion Protection Coating in Accordance with Burn Damage (Burn Damage에 따른 도막의 방청성 평가)

  • Seo, ChangHo;Park, JinHwan
    • Corrosion Science and Technology
    • /
    • v.15 no.6
    • /
    • pp.290-296
    • /
    • 2016
  • This study was conducted in order to examine the effect of burn damage and the resultant anti-corrosion performance. The breakdown and defect of the paint film caused by burn damage are considered to affect not only the macroscopic appearance but also the adhesive force and the anti-corrosion performance of the paint film. The material of the paint film was epoxy paint that is used most widely for heavy-duty coating, and in order to induce burn damage, heat treatment with a torch was applied to the other side of the paint film. Surface and chemical structure changes according to aging were analyzed using FE-SEM and infrared absorption spectroscopy, and variation in the anti-corrosion performance was analyzed through the AC impedance test.

A Phenomenological Review on the Damage of Hot Gas Parts caused by Explosion of Gas Turbine Cooling System (가스터빈 내부 냉각계통 발화에 의한 고온부품 손상의 현상학적 고찰)

  • Yu, Won-Ju;Lee, Seong-Hyun
    • Journal of the Korea Safety Management & Science
    • /
    • v.12 no.2
    • /
    • pp.75-82
    • /
    • 2010
  • Gas turbines for power generating operate in a very high temperature condition and use natural gas for fuel. For this reason, many cases of damage happen at hot gas parts which are severely affected by high temperature gas and many cases of explosion occur by fuel gas. So a lot of efforts should be made to prevent hot gas parts damage and gas explosion accidents. Though there are many damage cases and explosion accidents, it is very difficult to find out the root causes of hot gas parts damage caused by gas explosion due to gas leakage in the heat exchanger for air cooling and gas heating. To prevent gas turbine from damage caused by gas explosion, removal of leakage gas from gas turbine is inevitably required before firing the gas turbine and installing alarm systems is also required for detecting gas leakage at stop valve to turbine while shut down.