• Title/Summary/Keyword: heat-damage

Search Result 981, Processing Time 0.026 seconds

Quality Changes of Fresh Garlic Paste during Storage (생마늘 페이스트의 저장 과정 중 품질 변화)

  • 정재홍
    • The Korean Journal of Food And Nutrition
    • /
    • v.11 no.3
    • /
    • pp.278-282
    • /
    • 1998
  • An attempt was made in this study to investigate the possibility of processing fresh garlic into an fresh garlic paste. The characteristics of fresh garlic paste and processing properties were investigated and the effect of salt, maltodextrin, acid and heat on product quality during storage were studied. After the processed fresh garlic paste was stored at 3$0^{\circ}C$ and 5$^{\circ}C$ without light for 6 months. The weight and pH of colve were 93% of total and 5.95, respectively. Addition of 10% salt, 10% maltodextrin, 01.% dl-malic acid, and heat on fresh garlic paste maintain color of fresh garlic could be preserved for 6 months at 5$^{\circ}C$. Judging from thiosulfinate and pyruvate content, and sensory evaluation, quality damage of fresh garlic paste which was make of 10% salt, 10% maltodextrin, 0.1% dl-malic acid, and heat on fresh garlic paste hardly occurred at 5$^{\circ}C$ but occurred considerable level at 3$0^{\circ}C$ during storage for 6 months.

  • PDF

Study on Safety Design of Vertical-Type Heat Recovery Steam Generator Based on Large-Scale Analysis (대규모해석을 활용한 수직형 배열회수 증기발생기의 안전설계에 관한 연구)

  • Ryu, Tae-Young;Yang, Sang-Mo;Jang, Hyun-Min;Choi, Jae-Boong;Myung, Ki-Chul;Lee, Dong-Yun;Choi, Shin-Beom
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.12
    • /
    • pp.1535-1542
    • /
    • 2012
  • A Heat Recovery Steam Generator(HRSG) is the main component of a Combined Cycle Power Plant(CCPP). It is a very large structure that is made from relatively thin metal sheets. Therefore, the structural integrity of an HRSG is very important to ensure safe operation during plant lifetime. In particular, thermal deformation and thermal fatigue have been revealed as the main causes of the mechanical degradation of an HRSG. In order to prevent unexpected damage, safety evaluation based on a large-scale analysis is necessary. Therefore, this study aims to improve the safety of HRSG by using Finite Element Analysis(FEA) results derived from large-scale analysis. Furthermore, the modified design is verified by comparing it with the original one. This result will be used as basic data for improving the safety of a vertical-type HRSG.

A study on the Combustion Characteristics of Wall Paper (내장벽지의 연소특성에 관한 연구)

  • Oh, Kyu-Hyung;Choi, Yeon-Yi;Lee, Sung-Eun
    • Fire Science and Engineering
    • /
    • v.21 no.1 s.65
    • /
    • pp.90-97
    • /
    • 2007
  • Combustion characteristics and toxicity of combustion gas of wallpaper samples were analyzed to evaluate the fire risk of wallpaper furnished in living space. In this study ash residue ratio was measured with high temperature electric furnace, and thermal analysis was carried out with TGA. Combustion time and smoke concentration were measured with cone heater and combustion gas analyzer. Smoke density of samples was measured using smoke chamber of ASTM E 662. The experimental results were showed as followings. Pyrolysis of silk wallpaper started at lower temperature compared to the other samples. It means that the silk wallpaper can be ignited at low heat flux and will have more fire risk than the others. Ignition time by radiation heat flux of silk wallpaper is shorter compared to the other samples, so evacuation time must be reduced. In the case of vinyl coated silk wall paper, carbon mono oxide concentration is the highest and the toxicity and damage effect to consciousness was stronger compared to the other samples. Smoke density of silk wall paper and fire retardant mixed coated silk wall paper were very high due to vinyl coating.

A Study of New Technique Development for Creep Evaluation of Heat Resistant Steel Weldment(I) (내열강 용접부의 크리프 평가 신기술 개발에 관한 연구)

  • 유효선;백승세;권일현;이송인
    • Journal of Welding and Joining
    • /
    • v.20 no.6
    • /
    • pp.30-30
    • /
    • 2002
  • It has been reported that the creep characteristics on weldment which is composed of weld metal(W.M), fusion line(F.L), heat-affected zone(HAZ), and base meta(B.M) could be unpredictably changed in severe service conditions such as high temperature and high pressure. However, the studies done on creep damage in power plant components have been mostly conducted on B.M and not the creep properties of the localized microstructures in weldment have been thoroughly investigated yet. In this paper, it is investigated the creep characteristics for three microstructures like coarse-grain HAZ(CGHAZ), W.M, and B.M in X20CrMoV121 steel weldment by the small punch-creep-(SP-Creep) test using miniaturized specimen(l0×10×0.5mm). The W.M microstructure possesses the higher creep resistance and shows lower creep strain rate than the B.M and CGHAZ. In the lower creep load the highest creep strain rate is exhibited in CGHAZ, whereas in the higher creep load the B.M represents the high creep strain rate. The power law correlation for all microstructures exists between creep rate and creep load at 600℃. The values of creep load index (n) based on creep strain rate for B.M, CGHAZ, and W.M are 7.54, 4.23, and 5.06, respectively and CGHAZ which shows coarse grains owing to high welding heat has the lowest creep loade index. In all creep loads, the creep life for W.M shows the highest value.

Documentational Study and Observation from the View of Hyungsang Medicine on Bangpungtongseong-san (방풍통성산(防風通聖散)의 문헌(文獻) 및 형상의학적(形象醫學的) 고찰(考察))

  • Suck, Min-Hee;Kim, Jun-Hong;Lee, Yong-Tae
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.22 no.1
    • /
    • pp.51-59
    • /
    • 2008
  • The following conclusions were obtained from the studies on Bangpuntongseongsan both from the documents and Hyungsang medicine. Bangpungtongseong-san was created by Yu Wan-so to relieve both interior and exterior of disease from the pathogenic fire, and it cures wind syndrome and dry syndrome. Bangpungtongseong-san is of light herbal combination and it works in the upper part of the body and is mainly applied to skin disease. Perspiration without harming the exterior and purgation without hurting the interior shows that it is not a severe prescription belonging to meditation therapy. It is mostly used for curing the disease of internal heat caused by over drinking and consuming heavy food, and it has special relationship with Yangmyung meridian. It is mentioned in the chapters of spirit, head, face, eye, ear, nose, throat, skin, hair, prescription, wind, dryness, fire, internal damage, epidemic infectious disease, carbuncle and cellulitis, ulceration, and pediatrics of ${\ulcorner}$Donguibogam${\lrcorner}$. It is usually applied to those who belong to Yangmyung type of the six meridian types or wind type, who has excessive heat, people with red complexion, reddened nose, pimples over the face and nose, coarse heel, loss of hair due to wind-heat, and to those who tend to have dandruff. Through examination over the cases treated with Hyungsan medicine, Bangpungtongseong-san was found efficacious in bloodshot eyes, brandy nose, loss of hair, various skin problems, tetanus, acute alcoholism, paralysis of hand and foot, deafness, and tinnitus.

Characterization and evaluation of response to heat and chilling stress in exotic weeds using chlorophyll a fluorescence OJIP transient

  • Sohn, Soo In;Lee, Yong Ho;Hong, Sun Hee;Kim, Chang Seok;Kim, Myung Hyun;Na, Chae Sun;Oh, Young Ju
    • Korean Journal of Environmental Biology
    • /
    • v.38 no.3
    • /
    • pp.450-460
    • /
    • 2020
  • The occurrence of exotic weeds and their influx into farmlands due to climate change poses many problems. Therefore, it is necessary to generate a prediction model for the occurrence pattern of these exotic weeds based on scientific evidence and devise prevention measures. The photosynthetic apparatus is known as the most temperature-sensitive component of a plant cell and its initial response to temperature stress is to inhibit the activation of photosystem II. This study investigated the potential of OJIP transients in assessing temperature stress in exotic weeds. The four exotic weeds currently flowing into Korean farmlands include Amaranthus spinosus, Conyza bonariensis, Crassocephalum crepidioides, and Amaranthus viridis. These weeds were treated at 5℃, 10℃, 15℃, 20℃, 25℃, 30℃, 35℃, and 40℃ and the OJIP curves and JIP parameters were measured and analyzed. The results showed that heat and chilling stress affected the photosystem II(PSII) electron transport of A. spinosus, whereas C. crepidioides and A. viridis were more affected by high-temperature stress than by low-temperature stress. Lastly, C. bonariensis showed resistance to both high and low-temperature stress. The results of this study suggest that OJIP transients and JIP parameters can be used to analyze damage to the photosynthetic apparatus by temperature stress and that they can serve as sensitive indicators for the occurrence pattern of exotic weeds.

A Study on New Technique Development for Creep Evaluation of Heat Resistant Steel Weldment (I) (내열강 용접부의 크리프 평가 신기술 개발에 관한 연구(I))

  • 유효선;백승세;권일현;이송인
    • Journal of Welding and Joining
    • /
    • v.20 no.6
    • /
    • pp.754-761
    • /
    • 2002
  • It has been reported that the creep characteristics on weldment which is composed of weld metal(W.M), fusion line(F.L), heat-affected zone(HAZ), and base meta(B.M) could be unpredictably changed in severe service conditions such as high temperature and high pressure. However, the studies done on creep damage in power plant components have been mostly conducted on B.M and not the creep properties of the localized microstructures in weldment have been thoroughly investigated yet. In this paper, it is investigated the creep characteristics for three microstructures like coarse-grain HAZ(CGHAZ), W.M, and B.M in X20CrMoV121 steel weldment by the small punch-creep-(SP-Creep) test using miniaturized specimen($10{\times}10{\times}0.5mm$). The W.M microstructure possesses the higher creep resistance and shows lower creep strain rate than the B.M and CGHAZ. In the lower creep load the highest creep strain rate is exhibited in CGHAZ, whereas in the higher creep load the B.M represents the high creep strain rate. The power law correlation for all microstructures exists between creep rate and creep load at $600^{\circ}C$. The values of creep load index (n) based on creep strain rate for B.M, CGHAZ, and W.M are 7.54, 4.23, and 5.06, respectively and CGHAZ which shows coarse grains owing to high welding heat has the lowest creep loade index. In all creep loads, the creep life for W.M shows the highest value.

Analysis of Rail Wear Rate according to Wheel/Rail Contact Pressure on Curved Track (곡선부 차륜/레일 접촉압력에 따른 레일마모진전 경향 분석)

  • Sung, Deok-Yong
    • Journal of the Korean Society for Railway
    • /
    • v.20 no.4
    • /
    • pp.512-520
    • /
    • 2017
  • On a typical railway, trains travel using the friction between the wheel and the rail. Contact pressure is generated between the wheel and the rail, and the magnitude of the contact pressure changes depending on the weight, speed, wheel-set hunting, and contact point of the vehicle. In this study, the contact characteristics were analyzed through the finite element analysis for the wheel/rail system on curved track, and fatigue damage and wear rate of wheel/rail according to contact pressure were analyzed through rolling contact fatigue test. Results indicate that, general and heat treated rails showed higher wear rate than wheels, and general and heat treated rail wear rate increased rapidly over a certain number of repetitions. In addition, the general rail wear rate was about 7 ~ 15% higher than that of the heat treated rail, and a regression equation for the rail wear rate with the contact pressure in the contact pressure range of 900 ~ 1,500 MPa was presented.

Failure Analysis on Localized Corrosion of Heat Transport Pipe in District Heating System (지역난방 열수송관 국부 부식 파손 분석)

  • Kim, You Sub;Chae, Hobyung;Kim, Woo Cheol;Jeong, Joon Cheol;Kim, Heesan;Kim, Jung-Gu;Lee, Soo Yeol
    • Corrosion Science and Technology
    • /
    • v.19 no.3
    • /
    • pp.122-130
    • /
    • 2020
  • In this study, a corrosion failure analysis of a heat transport pipe was conducted, as the result of a pinhole leak. Interestingly, the corrosion damage occurred externally in the pipeline, resulting in severe thickness reduction near the seam line. Also, while a stable magnetite protective film formed on the inner surface, the manganese oxide formation occurred only on the outer surface. The interior and exterior of the pipe were composed of ferrite and pearlite. The large manganese sulfide and alumina inclusions were found near the seam line. In addition, the manganese sulfide inclusions resulted in grooving corrosion, which progressed in the seam line leading to the reduction in the thickness, followed by the exposure of the alumina in the matrix to the outer surface. To note, the corrosion was accelerated by pits generated from the boundaries separating the inclusions from the matrix, which resulted in pinhole leaks and water loss.

Failure Analysis of Air Vent Connected with Heat Supply Pipeline Under Manhole (맨홀에 설치된 지역난방 열공급관 에어벤트의 전단부 파손 원인 규명)

  • Cho, Jeongmin;Chae, Hobyung;Kim, Heesan;Kim, Jung-Gu;Kim, Woo Cheol;Jeong, Joon Cheol;Lee, Soo Yeol
    • Corrosion Science and Technology
    • /
    • v.19 no.4
    • /
    • pp.196-202
    • /
    • 2020
  • The air vent connected to a heat supply pipeline in the district heating system has been used to eliminate the existing air in the pipe, which has a detrimental effect on corrosion durability and heat efficiency. Recently, the air vent installed under a manhole for 22 years was corroded and several pinholes were detected in the front-end of the air vent. To identify the cause of the failure, thickness reduction, corrosion products, and water quality were examined. The corrosion damage was significant at the outside of the front-end of the air vent where the insulator was covered. While a thin oxide layer was formed in the interior of the tube, the coarse and porous corrosion products consisting of magnetite and hematite were found externally. Water flowing into the thermal insulator was absorbed by the insulator following hydrolysis. The hydrolyzed insulator ejected the corrosion factors such as Cl-, SO42-, and NH4+. The findings suggest that the corrosion under insulation due to rain water is the main cause of the underlying failure in the air vent.