• Title/Summary/Keyword: heat treatment process

Search Result 1,874, Processing Time 0.027 seconds

Experimental Study on the Thermodynamic Characteristics of Commercial Small-size Moxa Combustion (상용 소형 쑥뜸의 열역학적 특성에 대한 실험적 연구)

  • Lee Geon-Mok;Hwang Yoo-Jin;Lee Gun-Hyee
    • Journal of Acupuncture Research
    • /
    • v.18 no.6
    • /
    • pp.171-187
    • /
    • 2001
  • Objective : Moxibustion has been proved efficacious for many diseases, but isn't widespread in the clinics due to a danger of skin burning, the smoke produced while burning a moxa combustion and so on. Therefore, another type of moxa that can be resolved these troubles is required. To improve the effect of moxibustion and develop the new thermal stimulating treatment, the performance of commercial moxibustion widely used are studied systematically and found out quantitatively. Methods : We have selected two types (small-size moxa A(sMA), small-size moxa B (sMB)) among small-size moxaes used widely in the clinic. We examined combustion time, various temperatures, temperature gradient in each period during a combustion of moxa. Results : 1. The combustion time in the preheating period appeared somewhat longer in sMA than in sMB. 2, The combustion time in the heating period appeared longer in sMA by 26% than in sMB. 3. The average temperature in the heating period was $37.6{\sim}37.8^{\circ}C\;in\;sMA\;and\;36.2{\sim}36.8^{\circ}C$ in sMB and the maximum temperature measured at a center of contact surface in sMA was $48.6^{\circ}C$, higher by over $2.8^{\circ}C$ than that of sMB moxibustion. 4. The average ascending temperature gradient in the heating period was $0.08{\sim}0.1^{\circ}C/sec$ in both moxaes, and the average ascending temperature gradient of heating period in sMB appeared larger. The maximum ascending temperature gradient appeared higher in sMB, and the time reaching maximum ascending temperature gradient appeared much earlier in sMA than in sMB. 5. The combustion time in the retaining period was around 100 sec in sMA and around 275 sec in sMB. 6. The average temperature in the retaining period was $42.2{\sim}46.0^{\circ}C\;in\;sMA\;and\;39.3{\sim}41.4^{\circ}C/sec$ in sMB. The minimum temperature in the retaining period was over $38.80^{\circ}C$ in sMA but just $34.7^{\circ}C$ in sMB. 7. The average descending temperature gradient in sMA was $-0.050{\sim}0.067^{\circ}C/sec$ and in sMB was $-0.030{\sim}0.037^{\circ}C/sec$ 8. The combustion time in the cooling period appeared longer over two times in sMA than in sMB, and the time which the cooling period (minimum temperature) finished at appeared later in sMB by 55 sec. 9. We classified the combustion process that the measured temperature rose over body heat($37^{\circ}C$) into the effective combustion period. The effective combustion time was 233.3 sec in sMA and 300.4 sec in sMB respectively, and was longer by about 29% in sMB. The average temperature and maximum temperature in the effective combustion time appeared higher in sMA. The time taken until the maximum temperature was reached was 225.1 sec in sMA and 244.5 sec in sMB, faster by about 20 sec in sMA. The maximum ascending temperature gradient during the effective combustion period appeared larger about 1.4 times in sMB, but the time when the maximum ascending temperature gradient happened was faster in sMA. Conclusion : It appears that sMB, compared with sMA, is proper if necessary to apply the long time and weak stimulus, because of the gentle stimulus during the relatively longer time. In contrast, sMA that the symmetrical combustion happened is proper if necessary to apply the short time and strong stimulus.

  • PDF

Reliability of a Cobalt Silicide on Counter Electrodes for Dye Sensitized Solar Cells (코발트실리사이드를 이용한 염료감응형 태양전지 상대전극의 신뢰성 평가)

  • Kim, Kwangbae;Park, Taeyeul;Song, Ohsung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.4
    • /
    • pp.1-7
    • /
    • 2017
  • Cobalt silicide was used as a counter electrode in order to confirm its reliability in dye-sensitized solar cell (DSSC) devices. 100 nm-Co/300 nm-Si/quartz was formed by an evaporator and cobalt silicide was formed by vacuum heat treatment at $700^{\circ}C$ for 60 min to form approximately 350 nm-CoSi. This process was followed by etching in $80^{\circ}C$-30% $H_2SO_4$ to remove the cobalt residue on the cobalt silicide surface. Also, for the comparison against Pt, we prepared a 100 nm-Pt/glass counter electrode. Cobalt silicide was used for the counter electrode in order to confirm its reliability in DSSC devices and maintained for 0, 168, 336, 504, 672, and 840 hours at $80^{\circ}C$. The photovoltaic properties of the DSSCs employing cobalt silicide were confirmed by using a simulator and potentiostat. Cyclic-voltammetry, field emission scanning electron microscopy, focused ion beam scanning electron microscopy, and energy dispersive spectrometry analyses were used to confirm the catalytic activity, microstructure, and composition, respectively. The energy conversion efficiency (ECE) as a function of time and ECE of the DSSC with Pt and CoSi counter electrodes were maintained for 504 hours. However, after 672 hours, the ECEs decreased to a half of their initial values. The results of the catalytic activity analysis showed that the catalytic activities of the Pt and CoSi counter electrodes decreased to 64% and 57% of their initial values, respectively(after 840 hours). The microstructure analysis showed that the CoSi layer improved the durability in the electrolyte, but because the stress concentrates on the contact surface between the lower quartz substrate and the CoSi layer, cracks are formed locally and flaking occurs. Thus, deterioration occurs due to the residual stress built up during the silicidation of the CoSi counter electrode, so it is necessary to take measures against these residual stresses, in order to ensure the reliability of the electrode.

Improvement of Microbiological Quality of Ganjang-gejang by Acetic Acid Washing and Addition of Chitosan (초산 세척과 키토산 첨가에 의한 간장게장의 미생물학적 품질 향상)

  • Lee, Seok-Gyu;Lee, Bo-Ram;Yuk, Hyun-Gyun
    • Journal of Food Hygiene and Safety
    • /
    • v.34 no.3
    • /
    • pp.296-302
    • /
    • 2019
  • Ganjang-gejang (soy sauce-marinated crab) is a ready-to-eat (RTE) seafood and is also one of the most popular traditional dishes in Korea. It is generally prepared by washing raw blue crabs and then preserving them in soy sauce. Since this process does not involve cooking or any treatment with heat, it is difficult to control the microbiological quality of the final product. Thus, the objectives of this study were to compare the efficacies of various sanitizers in eliminating microorganisms on raw blue crab during the washing step and to evaluate the effectiveness of chitosan on the inhibition of microbial growth in the ganjang-gejang during storage. The raw blue crabs were submerged in chlorinated water (50 mg/L), peracetic acid (40 mg/L), acetic acid (5%) and lactic acid (5%) for 10 min at $25^{\circ}C$, respectively. The blue crabs treated with 5% acetic acid were marinated with soy sauce containing 0.5 and 1% of soluble chitosan, followed by storing them at 4 and $12^{\circ}C$ for up to 30 days. Results show that 5% acetic acid reduced the microbial populations on the blue crabs by 1.5 log CFU/g, which was significantly higher than those of other treatments. Based on these results, 5% acetic acid was selected for the washing step. The microbial populations of all ganjang-gejang samples significantly increased to about 8.0 CFU/g at $12^{\circ}C$ for 7 days. At $4^{\circ}C$, the microbial populations of the products containing 1% chitosan increased by about 2.9 CFU/g for 20 days, which were significantly lower than those (4.2-4.5 log CFU/g) of the products without and with 0.5% chitosan. Thus, these results suggest that 5% acetic acid washing of raw blue crabs and the addition of 1% chitosan in ganjang-gejang could improve the microbiological quality of the final products under refrigerated condition.

A Study on Synthesis of Ca and Mg Compounds from Dolomite with Salt Additional React (MgCl2·6H2O) (염 첨가 반응(MgCl2·6H2O)을 이용하여 백운석으로부터 Ca 화합물과 Mg 화합물 합성에 관한 연구)

  • Hwang, Dae Ju;Yu, Young Hwan;Cho, Kye Hong;Lee, Jong Dae
    • Korean Chemical Engineering Research
    • /
    • v.59 no.3
    • /
    • pp.399-409
    • /
    • 2021
  • In order to utilize dolomite as a calcium/magnesium compound material, it was prepared highly reactive calcined dolomite(CaO·MgO) using a microwave kiln (950 ℃, 60 min). The experiment was performed according to the standard of the hydration test (ASTM C 110) and hydration reactivity was analyzed as medium reactivity (max 74.1 ℃, 5 min). Experiments were performed with calcined dolomite and salt (MgCl2·6H2O) (a) 1:1, (b) 1:1.5, and (c) 1:2 wt% based on the hydration reaction of calcined dolomite. The result of X-ray diffraction analysis confirmed that MgO of calcined dolomite increased to Mg(OH)2 as the salt addition ratio increased. After the separating reaction, calcium was stirred at 80 ℃, 24 hr that produced CaCl2 of white crystal. XRD results, it was confirmed calcium chloride hydrate (CaCl2·(H2O)x) and CaO of calcined dolomite and salt additional reaction was separated into CaCl2. And it was synthesized with Ca(OH)2 99 wt% by NaOH adding reaction to the CaCl2 solution, and the synthesized Ca(OH)2 was manufactured CaO through the heat treatment process. In order to prepare calcium carbonate, CaCO3 was synthesized by adding Na2CO3 to CaCl2 solution, and the shape was analyzed in cubic form with a purity of 99 wt%.