• 제목/요약/키워드: heat transfer method

검색결과 2,033건 처리시간 0.025초

확대 전열관의 비등열전달에 관한 이론적 연구 (A Theoretical Study on the Boiling Heat Transfer Performance of Tubes with Extended Surfaces)

  • 조시기
    • 태양에너지
    • /
    • 제19권2호
    • /
    • pp.45-56
    • /
    • 1999
  • The performance of vertical and horizontal tubes with extended surface of rectangular and triangular cross section was investigated theoretically for boiling heat transfer. A simple method for numerical program assuming one-dimensional heat flow was used to predict the performance of these extended surface tubes. The object of this study was to predict the effects of the height, thickness, numbers and, clearance of the extended surface on boiling heat transfer. The results showed that extended surfaces are quite effective as compared to plane surfaces especially near the bum-out point and to promote heat flux in boiling heat transfer.

  • PDF

와류발생기의 가진 주파수에 의한 열전달 향상 (Heat Transfer Enhancement by an Oscillating Frequency of Vortex Generator)

  • 방창훈;김정수;예용택
    • 한국안전학회지
    • /
    • 제21권2호
    • /
    • pp.7-14
    • /
    • 2006
  • A Problem of low-velocity forced convection in a channel flow with heated wall is of practical importance and widely considered in the design of devices such as heat exchangers, and electronic equipments. Therefore, there is an urgent need for improving heat transfer performance of heated wall in the channel. In the present study, an oscillating vortex generator method is proposed to enhance the heat transfer in a channel. In this method, a rectangular bars are set in the upstream of heated region of the channel. The bars are forced to oscillate normal to the inflow, and then actively and largely generates transverse vortices behind the bars. As a result, this apparatus can enhance the heat transfer rates remarkably. Because of the interaction between the flow and oscillating bars, the variations of the flow and thermal fields become time-dependent state.

유동입자층에서의 복사열전달 특성에 관한 연구 (A Study on the Radiative Heat Transfer Characteristics in the Fluidized Particles Layer)

  • 김금무;김용모;김경근
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제18권4호
    • /
    • pp.33-42
    • /
    • 1994
  • The radiative heat transfer analysis in the fluidized particles layer has important application in many technological areas such as combustion chambers at high pressure and temperature, plasma generators for nuclear fusion, MHD generator using pulverized coal and the liquid droplet radiator used to reject wasted heat from a power plant operating in space. To accurately model the radiation properties of the fluidized particles layer, it is necessary to know the radiation interchange factors of particles in each layer. But the solutions are usually not possible for the equations of radiative heat transfer because it has an inherent difficulty in treating the governing intergo- differential equations, which are derived from the remote effects of radiative heat transfer. In this study, the analysis uses the Monte Carlo simulation method with optical depth model to calculate the radiation interchange factors of particles in each layer with wall and with each other.

  • PDF

공랭식 열펌프의 습표면 핀-관 증발기의 현장 성능 시험 (In-Situ Performance Test of a Wet Surface Finned-Tube Evaporator of an Air Source Heat Pump)

  • 백영진;장영수;김영일
    • 설비공학논문집
    • /
    • 제13권9호
    • /
    • pp.818-826
    • /
    • 2001
  • In this study, in-situ performance test of a wet surface finned-tube evaporator of an air source heat pump which has a rating capacity of 20RT is carried out. Since test conditions, such as indoor and outdoor air conditions cannot be controlled to satisfy the standard test conditions, experiments are done with the inlet air conditions as they exist, From the experimental data, air side heat and mass transfer coefficients were calculated by the well known heat and mass transfer analogy and tube-by-tube method. since current procedure underpredicted the experimental sensible heat factor(SHF), a proper empirical parameter was introduced to predict the experimental data with satisfactory results. This study provides the method of evaluating the heat and mass transfer coefficients of a wet surface finned-tube evaporator of which in-situ performance test in necessary.

  • PDF

Analysis of a Wet Surface Finned-tube Evaporator of an Air Source Heat Pump

  • Baik, Young-Jin;Chang, Young-Soo;Kim, Young-Il
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • 제10권4호
    • /
    • pp.211-219
    • /
    • 2002
  • In this study, in-situ performance test of a wet surface finned-tube evaporator of an air source heat pump which has a rating capacity of 20 RT is carried out. Since test conditions, such as indoor and outdoor air conditions cannot be controlled to satisfy the standard test conditions, experiments are done with the inlet air conditions as they exist. From the experimental data, air side heat and mass transfer coefficients were calculated by the well known heat and mass transfer analogy and tube-by-tube method. Since current procedure underpredicted the experimental sensible heat factor (SHF), a proper empirical parameter was introduced to predict the experimental data with satisfactory results. This study provides the method of evaluating the heat and mass transfer coefficients of a wet surface finned-tube evaporator of which in-situ performance test is necessary.

모듈형 쉘-관군 열교환기의 응축 열전달 특성 (Condensation Heat Transfer on the Horizontal Tubles of a Modular Shell and Tube-Bundle Heat Exchanger)

  • 박병규;김근오;김무근
    • 설비공학논문집
    • /
    • 제14권1호
    • /
    • pp.21-30
    • /
    • 2002
  • The thermal performance of a modular shell and tube-bundle heat exchanger has been analyzed using section-by-section method. Investigated are the effects of air and water inlet conditions on condensation heat transfer of horizontal tubes. It is found that they are significant for the heat transfer of the modular shell and tube-bundle heat exchanger It is shown that the predictions and experimental results are in good agreements.

용탕단조시 가압력에 따른 계면열전달계수의 변화 (Effect of Pressure on Interfacial Heat Transfer Coefficient in the Squeeze Casting Process)

  • 김진수;안재영;한요섭;이호인;홍준표
    • 한국주조공학회지
    • /
    • 제14권3호
    • /
    • pp.248-257
    • /
    • 1994
  • Research in heat transfer and solidification commonly involves experimentation and mathematical modeling with associated numerical analysis and computation. Inverse problems in heat transfer are part of this paradigm. During the solidification of metal casting, an interfacial heat transfer resistance exists at the boundary between the casting and the mold, and this heat transfer resistance usually varies with time. In the case of the squeeze casting the contact heat transfer resistance is decreased by pressure and ideal contact is almost accomplished. In the present work, heat transfer coefficient, which is inverse value of the heat transfer resistance, was used for convenience. A numerical technique, Non-Linear Estimation has been adopted for calculation of the casting/mold interfacial heat transfer coefficient during the squeeze casting process. In this method, the measured temperature data from experiment were used. The computational results were applied to the analysis of heat transfer and solidification.

  • PDF

원형가이드 설치에 따른 충돌제트/유출냉각에서 열/물질전달 특성 (Heat/Mass Transfer for Impingement/Effusion Cooling System with Circular Guide)

  • 홍성국;조형희
    • 대한기계학회논문집B
    • /
    • 제30권12호
    • /
    • pp.1147-1154
    • /
    • 2006
  • An experimental investigation was conducted to enhance the heat/mass transfer for impingement/effusion cooling system when the initial crossflow was formed. For the improvement of heat transfer, the circular guide is installed on the injection hole. At the fixed jet Reynolds number of 10,000, the measurements were carried out for blowing ratios ranging from 0.5 to 1.5. The local heat/mass transfer coefficients on the effusion plate are measured using a naphthalene sublimation method. The result presents that the circular guide protects the injected jet from the initial crossflow, increasing the heat/mass transfer. The heat transfer of stagnation region is hardly changed regardless of the blowing ratio. The secondary peak is obviously formed by flow transition to turbulent flow. At high blowing ratio of 1.5, the circular guide produces $26{\sim}30%$ augmentation on the averaged heat/mass transfer while the case without circular guide leads to the low and non-uniform heat/mass transfer. With the increased heat/mass transfer, the installation of circular guide is accompanied by the increase of pressure loss in the channel. However, the pressure drop caused by the circular guide is lower than that for other cooling technique with the circular pin fin.

내부(內部)에 삼각형(三角形) 핀이 부착(附着)된 회전형(回轉型) 히이트파이프의 전열특성(傳熱特性) (Heat Transfer Characteristics for Internally Triangular finned Rotating Heat Pipes)

  • 권순석;전철호;장영석;서해성
    • 태양에너지
    • /
    • 제9권1호
    • /
    • pp.43-52
    • /
    • 1989
  • Heat transfer rate and heat flux from the condenser with internally triangular fins rotating heat pipe has been numerically studied by finite element method. The results of numerical and P.J. Martos' experimental showed good agreement and it was able to predict to the performance of a rotating heat pipe. By increasing fin half angle or fin height, heat transfer rate from condenser was increased slightly but heat flux was decreased. By increasing condenser radius or r.p.m. of rotating heat pipe, heat transfer rate and heat flux was increased rapidly. Heat transfer rate was rapidly increased with increasing fin numbers in case of few fm numbers but slowly increased at many fin numbers. So the optimum fin numbers were a half of maximum fin numbers which was able to install in the condenser of a rotating heat pipe.

  • PDF

非金屬 環狀윅을 갖는 히이트파이프 性能개선에 관한 연구 (A study on the improvement of the heat pipe performance with non metallic circumferential wick)

  • 서정일;장영석
    • 대한기계학회논문집
    • /
    • 제10권5호
    • /
    • pp.713-723
    • /
    • 1986
  • 본 논문에서는 비금속성 재질(SiO$_{2}$)로 만든 윅의 열전달 특성을 실험적 해석적 방법으로 연구했다. 먼저 비금속 윅을 단독으로만 실험하여 해석해와의 일치 성을 밝히고, 윅의 성능 개선을 위해 결합재의 첨가가 히이트파이프 증발부의 열전달 에 미치는 영향을 ADI해석 해법으로 예측하였다. 따라서 고온용 히이트파이프 뿐만 아니라 ,저온용에서도 비금속윅의 사용을 위한 가치 판단을 하고 비금속성 재질(SiO S12 등)이 윅으로서 넓게 이용 될수 있다는 가능성을 제시하는데 그 목적이 있다.