• Title/Summary/Keyword: heat transfer method

Search Result 2,038, Processing Time 0.03 seconds

Effects of Operating Conditions on NOx Emission in OFA-type Boiler (OFA형 보일러의 운전조건이 NOx 발생에 미치는 영향)

  • Park, Kyoungwoo
    • Applied Chemistry for Engineering
    • /
    • v.24 no.3
    • /
    • pp.253-259
    • /
    • 2013
  • In the present study, the characteristics of combustion phenomena and NOx emission in the OFA-type tangentially injected coal-fired boiler have been investigated numerically in order to find the effect of geometrical variation on the performance of the boiler. For these, numerical analyses of turbulent flow, chemical reaction, and radiation heat transfer are performed by using the computational fluid dynamics method. The predicted results clearly show that NOx formation highly depends on the combustion processes, the temperature and species concentrations. In addition, the optimum conditions for both the maximum NOx reduction and highest boiler efficiency can be obtained by considering the amount of supplied air and the injection angle at OFA, and modifying the boiler configuration. It is also found that the variation of supplied air at OFA is more effective than that of the injection angle for reducing the NOx emission, within the present operating conditions.

A Numerical Study for Natural Convective Heat Transfer by Finite Element Method (유한요소법을 이용한 자연대류열전달 수치해석 연구)

  • ;Ashley F. Emery
    • Journal of Energy Engineering
    • /
    • v.7 no.1
    • /
    • pp.113-121
    • /
    • 1998
  • In natural convection flows, the fluid velocities are highly dependent on the thermal field and property variations can have a strong effect on both the flow and thermal fields. To examine the effect of property variations, at first, numerical analyses covering wide range of the Prandtl number under the same Rayleigh numbers have been carried out. Next, we have modeled the viscosity and thermal conductivity as parabolic functions of temperature and a comprehensive set of numerical solutions have been obtained to understand the effect. The Prandtl number dependence of Nusselt number is fairly strong even though the effect is still weak compared to the Rayleigh number dependence. When thermophysical properties are dependent on temperature, the flow field showed a fairly weak variation except near boundaries, whereas the temperature field is strongly affected, especially by the temperature dependent thermal conductivity.

  • PDF

Analysis on Fluid Dynamics in the Cooling Tube for Manufacture of Liquid Hydrogen (액체수소 제조를 위한 냉각튜브 내 유동장 해석)

  • LEE, DAE-WON;NGUYEN, HOANG HAI;NASONOVA, ANNA;OH, IN-HWAN;KIM, KYO-SEON
    • Journal of Hydrogen and New Energy
    • /
    • v.26 no.4
    • /
    • pp.301-307
    • /
    • 2015
  • We present a study of hydrogen liquefaction using the CFD (Computational Fluid Dynamics) program. Liquid hydrogen has been evaluated as the best storage method because of high energy per unit mass than gas hydrogen, but efficient hydrogen liquefaction and storage are needed in order to apply actual industrial. In this study, we use the CFD program that apply navier-stokes equation. A hydrogen is cooled by heat transfer with the while passing gas hydrogen through Cu tube. We change diameter and flow rate and observe a change of the temperature and flow rate of gas hydrogen passing through Cu tube. As a result of, less flow rate and larger diameter are confirmed that liquefaction is more well. Ultimately, When we simulate the hydrogen liquefaction by using CFD program, and find optimum results, it is expected to contribute to the more effective and economical aspects such as time and cost.

Characterization of thermally driven polysilicon micro actuator (폴리실리콘 마이크로 액츄에이터의 열구동 특성분석)

  • Lee, Chang-Seung;Lee, Jae-Youl;Chung, Hoi-Hwan;Lee, Jong-Hyun;Yoo, Hyung-Joun
    • Proceedings of the KIEE Conference
    • /
    • 1996.07c
    • /
    • pp.2004-2006
    • /
    • 1996
  • A thermally driven polysilicon micro actuator has been fabricated using surface micromachining techniques. It consists of P-doped polysilicon as a structural layer and TEOS (tetracthylorthosilicate) as a sacrificial layer. The polysilicon was annealed for the relaxation of residual stress which is the main cause to its deformation such as bending and buckling. And the newly developed HF VPE (vapor phase etching) process was also used as an effective release method for the elimination of sacrificial TEOS layer. The thickneas of polysilicon is $2{\mu}m$ and the lengths of active and passive polysilicon cantilevers are $500{\mu}m$ and $260{\mu}m$, respectively. The actuation is incurred by die thermal expansion due to the current flow in the active polysilicon cantilever, which motion is amplified by lever mechanism. The moving distance of polysilicon micro actuator was experimentally conformed as large as $21{\mu}m$ at the input voltage level of 10V and 50Hz square wave. The actuating characteristics are investigated by simulating the phenomena of heat transfer and thermal expansion in the polysilicon layer. The displacement of actuator is analyzed to be proportional to the square of input voltage. These micro actuator technology can be utilized for the fabrication of MEMS (microelectromechanical system) such as micro relay, which requires large displacement or contact force but relatively slow response.

  • PDF

An Experimental Study on Investigation of the Main Factors to Improve the Formation Performance of Gas Hydrate (가스하이드레이트 생성성능 향상을 위한 주요인자별 특성 규명에 관한 실험적 연구)

  • Lee, Jeong-Hwan
    • Journal of the Korean Institute of Gas
    • /
    • v.13 no.3
    • /
    • pp.15-21
    • /
    • 2009
  • Gas hydrate is an ice-like crystalline compound that forms at low temperature and high pressure conditions. It consists of gas molecules surrounded by cages of water molecules. Although hydrate formation was initially found to pose serious flow-assurance problems in the gas pipelines or facilities, gas hydrates have much potential for application in a wide variety of areas, such as natural gas storage and transportation. Its very high gas-to-solid ratio and remarkably stable characteristics makes it an attractive candidate for such use. However, it needs to be researched further since it has a slow and complex formation process and a high production cost. In this study, formation experiments have been carried out to investigate the effects of pressure, temperature, water-to-storage volume ratio, SDS concentration, heat transfer and stirring. The results are presented to clarify the relationship between the formation process and each factor, which consequently will help find the most efficient production method.

  • PDF

A Study on the 1-Way FSI Analysis for Shutter of Side Jet Thruster (측추력기 Shutter의 단방향 유체-구조 연성해석에 관한 연구)

  • Ko, Jun Bok;Seo, Min Kyo;Lee, Kyeong Ho;Baek, Ki Bong;Cho, Seung Hwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.12
    • /
    • pp.1359-1365
    • /
    • 2014
  • In this study, 1-way fluid structure interaction analysis(FSI) for the shutter, component of side jet thruster was performed to evaluate the safety. Driving torque to open nozzle, thermal and high pressure load of hot gas was applied to shutter. Thus, the shutter must be designed to endure this load during combustion. We carried out computational fluid dynamics analysis to obtain the pressure, temperature, and heat transfer coefficient of hot gas of side jet thruster. We then used the data as the load condition for a thermal structural analysis using a mapping method. The locations with the maximum stress and temperature distributions were found. We compared the maximum stress with the tensile stress of shutter material according to temperature to evaluate the safety. We also analyzed the radial deformation of the shutter to set the proper interface gap with the side jet thruster parts.

Inverse Estimation of Surface Radiation Properties Using Repulsive Particle Swarm Optimization Algorithm (반발 입자 군집 최적화 알고리즘을 이용한 표면복사 물성치의 역추정에 관한 연구)

  • Lee, Kyun Ho;Kim, Ki Wan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.9
    • /
    • pp.747-755
    • /
    • 2014
  • The heat transfer mechanism for radiation is directly related to the emission of photons and electromagnetic waves. Depending on the participation of the medium, the radiation can be classified into two forms: surface and gas radiation. In the present study, unknown radiation properties were estimated using an inverse boundary analysis of surface radiation in an axisymmetric cylindrical enclosure. For efficiency, a repulsive particle swarm optimization (RPSO) algorithm, which is a relatively recent heuristic search method, was used as inverse solver. By comparing the convergence rates and accuracies with the results of a genetic algorithm (GA), the performances of the proposed RPSO algorithm as an inverse solver was verified when applied to the inverse analysis of the surface radiation problem.

An Empirical Study on the Quality Reliability of the Start-up performance of the Fixed Wing Aircraft at low temperature (고정익 항공기 저온 시동 성능의 품질 신뢰성 향상에 관한 실증적 연구)

  • Kim, DW;Jeong, SH
    • Journal of Korean Society for Quality Management
    • /
    • v.46 no.1
    • /
    • pp.169-188
    • /
    • 2018
  • Purpose: The purpose of this study is to analyze low-temperature starting performance of the light attacker and to search and improve the aircraft system including battery and Battery Charge and Control Unit(BCCU). Methods: In order to improve the starting up performance of the light attacker at low-temp, various deficiency cause were derived and analyzed using Fault Tree Analysis method. As a result, it was confirmed there were drawbacks in the charging and discharging mechanism of the battery. The inactivation of the battery's electrolyte at low-temp and the premature termination of the battery charge were the main cause. After long error and trial, we improved these problems by improving performance of battery and optimizing the charging algorithm of BCCU. Results: It was confirmed that the problems of starting up failures were solved through the combined performance test of the battery and BCCU, the ground test using the aircraft system and the operation test conducted by Korea Airforce operating unit for 3 months in winter. Conclusion: This study showed that the improvement of quality reliability was achieved and thus the start-up performance issue of the light attacker has been resolved at low temperature. And it is expected that the design methodologies of temperature-affected electrical system of aircraft will contribute to the development of the aircraft industry in the future.

Prediction of Glaze Ice Accretion on 2D Airfoil (2차원 에어포일의 유리얼음 형상 예측 코드 개발)

  • Son, Chan-Kyu;Oh, Se-Jong;Yee, Kwan-Jung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.8
    • /
    • pp.747-757
    • /
    • 2010
  • The ice accreted on the airfoil is one of the critical drivers that causes the degradation of aerodynamic performance as well as aircraft accidents. Hence, an efficient numerical code to predict the accreted ice shape is crucial for the successful design of de-icing and anti-icing devices. To this end, a numerical code has been developed for the prediction of glaze ice accretion shape on 2D airfoil. Constant Source-Doublet method is used for the purpose of computational efficiency and heat transfer in the icing process is accounted for by Messinger model. The computational results are thoroughly compared against available experiments and other computation codes such as LEWICE and TRAJICE. The direction and thickness of ice horn are shown to yield similar results compared to the experiments and other codes. In addition, the effects of various parameters - temperature, free-stream velocity, liquid water contents, and droplet diameter - on the ice shape are systematically analyzed through parametric studies.

Energy Consumption in Sterilization Process (통조림 식품의 살균중 에너지 소비)

  • Lee, Dong-Sun;Shin, Hyu-Nyun;Park, Know-Hyun;Shin, Dong-Hwa;Suh, Kee-Bong
    • Korean Journal of Food Science and Technology
    • /
    • v.15 no.3
    • /
    • pp.282-286
    • /
    • 1983
  • In order to obtain practical information for efficient energy usage in sterilization, energy consumption was monitored for various processing variables, i.e. heat transfer type (conduction and convection), can size (No. 202-2, No. 301-3, No. 301-7, and No. 603-2), retorting temperature $(110^{\circ}C-121^{\circ}C\;and\;130^{\circ}C)$, and sterilization method (steam, and hot water sterilization). Less energy was consumed for smaller can size and higher temperature, and this trend was more distinguished in conductive food than convective food. Hot water sterilization could lower energy consumption in conductive food, but not in convective food. Energy consumption data of this work was reasonable when compared with energy consumption of sterilization in canneries, and therefore thought to be able to be used for estimation, design and optimization of energy consumption in sterilization.

  • PDF