• 제목/요약/키워드: heat transfer correlations

검색결과 365건 처리시간 0.028초

원관의 냉각면에서의 착상 (Frost formation on a cold cylinder surface in cross flow)

  • 이동훈;양동근;이관수
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.1540-1545
    • /
    • 2004
  • This paper presents a semi-empirical model to predict the frost growth formed on the cold cylinder surface. The model is composed of the correlations for frost properties including the various frosting parameters and local heat transfer coefficient. The effects of varying the correlations for local heat transfer coefficient on the frost growth are examined to establish the model. The numerical results are compared with experimental data obtained by the previous researchers. The results agree well with the experimental data within a maximum error of 13%. As the results, the frost thickness decreases with changing angular position from front stagnation to separation point. Also the effects of air velocity on the frost growth are negligible, as compared to the other frosting parameters.

  • PDF

열교환기 형상이 축소한 IRWST 내부의 풀핵비등에 미치는 복합적인 영향에 대한 실험적 연구 (Experimental Investigation of the Combined Effects of Heat Exchanger Geometries on Nucleate Pool Boiling Heat Transfer in a Scaled IRWST)

  • Kang, Myeong-Gie;Chun, Moon-Hyun
    • Nuclear Engineering and Technology
    • /
    • 제28권1호
    • /
    • pp.1-16
    • /
    • 1996
  • 축소한 격납용기 내부 핵연료재장전수저장탱크의 안쪽에 설치한 열교환기 튜브의 주요 매개변수들이 풀핵비등 열전달에 미치는 복합적인 영향을 극명하기 위해 튜브 외경, 표면 거칠기, 그리고 튜브 설치 방향에 대한 다양한 조합들을 환용하여 열유속 q'quot;와 과열 온도 차이 $\Delta$T 간의 관계에 대한 총 1,966 개의 실험값을 취득하였다. 이 실험 결과들에 의하면, (1) 표면 거칠기 증가는 수평 및 수직 튜브 모두에 대해 열전달을 향상시키고, (2) 기포 생성에 따른 두가지 열전달 기구인 주변 액체 운동증가에 의한 열전달 향상과 기포층 및 기포 군집 형성에 의한 열전달 감소는 50㎾/$m^2$의 열유속을 경계로 낮은 열유속과 높은 열유속 영 역 에서 서로 다르게 관찰되는데, 이것은 튜브 설치 방향과 표면 거칠기의 크기와 관련이 있으며, (3) 튜브 외경 증가는 수평 및 수직 튜브 모두에 대해 열전달을 감소시키는데, 그 영향정도는 수평보다 수직구조에서 더 크다. 수평 및 수직 튜브들에 대해 열유속 q'quot;와 표면 거칠기 ($\varepsilon$) 및 튜브 외경 (D) 사이의 관계를 결정하는 두 가지 실험식을 개발하였다. 그리고, q'quot;만의 함수로된 풀핵비등 열전달계수( $h_{b}$ 에 대한 간단한 실험식도 부가적으로 개발하였다. 실험식도 부가적으로 개발하였다.'quot;만의 함수로된 풀핵비등 열전달계수($h_{b}$ 에 대한 간단한 실험식도 부가적으로 개발하였다.

  • PDF

다채널 알루미늄 평판관내 R22와 R134a의 흐름 응축 열전달 성능 비교 (A Comparison of Flow Condensation HTCs of R22 Alternatives in the Multi-Channel Tube)

  • 서영호;박기정;정동수
    • 설비공학논문집
    • /
    • 제16권6호
    • /
    • pp.589-598
    • /
    • 2004
  • Flow condensation heat transfer coefficients (HTCs) of R22 and R134a were measured on a horizontal 9 hole aluminum multi-channel tube. The main test section in the refrigerant loop was made of a flat multi-channel aluminum tube of 1.4 mm hydraulic diameter and 0.53 m length. Refrigerant was cooled by passing cold water through an annulus surrounding the test section. Data were obtained in the vapor qualities of 0.1∼0.9 at mass flux of 200∼400 kg/$m^2$s and heat flux of 7.3∼7.7 ㎾/$m^2$ at the saturation temperature of 4$0^{\circ}C$. All popular correlations in single-phase subcooled liquid and flow condensation originally developed for large single tubes predicted the present data of the flat tube within 20% deviation when effective heat transfer area is used in determining experimental data. This suggests that there is little change in flow characteristics and patterns when the tube diameter is reduced down to 1.4 mm diameter range. Thermal insulation for the outer tube section surrounding the test tube for the transport of heat transfer fluid is very important in fluid heat-ing or cooling type heat transfer experimental apparatus.

Nucleate Boiling Heat Transfer Coefficients of Mixtures Containing Propane, Isobutane and HFC134a

  • Park Ki-Jung;Jung Dong-Soo
    • Journal of Mechanical Science and Technology
    • /
    • 제20권3호
    • /
    • pp.399-408
    • /
    • 2006
  • Nucleate pool boiling heat transfer coefficient (HTCs) were measured with one nonazeotropic mixture of propane/isobutane and two azeotropic mixtures of HFC134a/isobutane and propane/HFC 134a. All data were taken at the liquid pool temperature of $7^{\circ}C$ on a horizontal plain tube of 19.0mm outside diameter with heat fluxes of $10\;kW/m^2\;to\;80kW/m^2$ with an interval of $10\;kW/m^2$ in the decreasing order of heat flux. The measurements were made through electrical heating by a cartridge heater. The nonazeotropic mixture of propane/isobutane showed a reduction of HTCs as much as 41% from the ideal values. The azeotropic mixtures of HFC134a/isobutane and propane/HFC134a showed a reduction of HTCs as much as 44% from the ideal values at compositions other than azeotropic compositions. At azeotropic compositions, however, the HTCs were even higher than the ideal values due to the increase in the vapor pressure. For all mixtures, the reduction in heat transfer was greater with larger gliding temperature difference. Stephan and Korner's and lung et al's correlations predicted the HTCs of mixtures with a mean deviation of 11%. The largest mean deviation occurred at the azeotropic compositions of HFC134a/isobutane and propane/HFC134a.

Condensation Heat Transfer and Pressure Drop of R-134a in the Oblong Shell and Plate Heat Exchanger

  • Park Jae-Hong;Kim Young-Soo
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • 제12권3호
    • /
    • pp.158-167
    • /
    • 2004
  • Condensation heat transfer experiments were conducted with a oblong shell and plate heat exchanger without oil in a refrigerant loop using R-134a. An experimental refrigerant loop has been developed to measure the condensation heat transfer coefficient $h_r$ and frictional pressure drop ${\Delta}p_f$ of R-134a in a vertical oblong shell and plate heat exchanger. Four vertical counter flow channels were formed in the oblong shell and plate heat exchanger by four plates having a corrugated sinusoid shape of a $45^{\circ}$ chevron angle. The effects of the refrigerant mass flux, average heat flux, refrigerant saturation temperature and vapor quality were explored in detail. Similar to the case of a plate heat exchanger, even at a very low Reynolds number, the flow in the oblong shell and plate heat exchanger remains turbulent. The results indicate that the condensation heat transfer coefficients and pressure drops increase with the vapor quality. A rise in the refrigerant mass flux causes an increase in the $h_r\;and\;{\Delta}p_f$. Also, a rise in the average heat flux causes an increase in the $h_r$. But the effect of the average heat flux does not show significant effect on the ${\Delta}p_f$. On the other hand, at a higher saturation temperature, both the $h_r\;and\;{\Delta}p_f$. found to be lower. Based on the present data, the empirical correlations are provided in terms of the Nusselt number and friction factor.

Evaporation Heat Transfer and Pressure Drop Characteristics of R-134a in the Oblong Shell and Plate Heat Exchanger

  • Park, Jae-Hong;Kim, Young-Soo
    • Journal of Mechanical Science and Technology
    • /
    • 제18권12호
    • /
    • pp.2284-2293
    • /
    • 2004
  • The evaporation heat transfer coefficient h$\_$r/ and frictional pressure drop Δp$\_$f/ of refrigerant R-134a flowing in the oblong shell and plate heat exchanger were investigated experimentally in this study. Four vertical counterflow channels were formed in the oblong shell and plate heat exchanger by four plates of geometry with a corrugated sinusoid shape of a 45 chevron angle. Upflow of refrigerant R-134a boils in two channels receiving heat from downflow of hot water in other channels. The effects of the refrigerant mass flux, average heat flux, refrigerant saturation temperature and vapor quality of R-134a were explored in detail. Similar to the case of a plate heat exchanger, even at a very low Reynolds number, the flow in the oblong shell and plate heat exchanger remains turbulent. The results indicate that the evaporation heat transfer coefficient h$\_$r/ and pressure drop Δp$\_$f/ increase with the vapor quality. A rise in the refrigerant mass flux causes an increase in the h$\_$r/ and Δp$\_$f/. But the effect of the average heat flux does not show significant effect on the h$\_$r/ and Δp$\_$f/. Finally, at a higher saturation temperature, both the h$\_$r/ and Δp$\_$f/ are found to be lower. The empirical correlations are also provided for the measured heat transfer coefficient and pressure drop in terms of the Nusselt number and friction factor.

광폭 루버 핀이 장착된 핀-관 열교환기의 습표면 성능에 대한 실험적 연구 (Experimental Study on the Airside Performance of Fin-and-Tube Heat Exchangers Having Wide Louver Fins Under Wet Conditions)

  • 김내현
    • 대한기계학회논문집B
    • /
    • 제39권9호
    • /
    • pp.719-726
    • /
    • 2015
  • 전열량을 늘리는 손쉬운 방법은 전열면적을 크게 하는 것이다. 본 연구에서는 세로와 가로 방향 튜브 핏치의 비(Pt/Pl)가 1.03인 광폭 루버 핀 시료의 습표면 j와 f 인자를 실험을 통하여 구하고 Pt/Pl=0.6인 일반 루버 핀 시료와 비교하였다. 동일 소비동력에서 광폭 루버 핀 시료의 전열성능이 일반 루버 핀 시료보다 1열에서 평균 16%, 2열에서 평균 29%, 3열에서 평균 38% 크게 나타났다. 이 증가량은 핀 면적의 증가량 (2.17배)에 비하면 현저히 작은데 이는 광폭 루버 핀 시료의 열전달계수와 핀 효율이 일반 루버 핀 시료의 값들보다 작기 때문이다. 핀 핏치가 j와 f 인자에 미치는 영향이 크지 않았다. 또한 튜브 열수가 증가할수록 j와 f 인자는 감소하였다. 실험 데이터를 기존 상관식과 비교하였다.

쉐브론 형상 판형 열교환기의 고온 채널에서의 압력손실 및 열전달 특성에 관한 해석 연구 (A Numerical Study on the Pressure Drop and Heat Transfer in the Hot Channel of Plate heat Exchanger with Chevron Shape)

  • 손상호;신정헌;김정철;윤석호;이공훈
    • 설비공학논문집
    • /
    • 제30권4호
    • /
    • pp.175-185
    • /
    • 2018
  • This research investigates the internal flow and heat transfer in a plate heat exchanger with chevron shape by utilizing the computational fluid dynamics (CFD) software. The basic unit of the plate heat exchanger is generally composed of a hot channel, an intermediate chevron plate, and a cold channel. Several studies have reported experimental and numerical simulation of heat transfer and pressure drop. This study focused on the detailed numerical simulation of flow and heat transfer in the complicated chevron shape channel. The long chevron plate was designed to include 16 chevron patterns. For proper mesh resolution, the number of cells was determined after the grid sensitivity test. The working fluid is water, and its properties are defined as a function of temperature. The Reynolds number ranges from 900 to 9,000 in the simulation. A realizable $k-{\varepsilon}$ model and non-equilibrium wall function are properly considered for the turbulent flow. The friction factors and heat transfer coefficient are validated by comparing them with existing empirical correlations, and other patterned flow phenomena are also investigated.