• Title/Summary/Keyword: heat transfer correlations

Search Result 365, Processing Time 0.025 seconds

An easy-to-use design procedure for multipass plate heat exchangers based on the performance plots (성능선도에 의한 다통로 판형열교환기의 간이설계법)

  • 유호선;이근휘;방보청
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.11 no.2
    • /
    • pp.250-261
    • /
    • 1999
  • Based on a set of performance plots relating the design variables to the imposed conditions, an easy-to-use and versatile design procedure for chevron-type multipass plate heat exchangers is developed. In order for the present procedure to cover multipass with unequal passes and non-unity ratio of heat capacity rate, each stream number of transfer unit is adopted as the basic design variable instead of the exchanger number of transfer unit. It is found that there exists a unique relation between the stream and exchanger number of transfer units regardless of the chevron angle and the plate length. In addition, for a given value of the pressure drop the heat transfer area per unit mass flow rate can be expressed in terms of the stream number of transfer unit only. These two relationships in the form of simple plots constitute the framework of design. The sample results in comparison with the available data indicate that the present procedure includes the previous ones as a subset, and that every design method is affected essentially by the selection of specific correlations for the heat transfer coefficient and the friction factor.

  • PDF

A Numerical Simulation of Flow and Heat Transfer in a Dimple-type Plate Heat Exchanger (딤플형 판형 열교환기의 유동 및 전열특성에 대한 수치해석)

  • Ahn, Hyuk-Jin;Lee, Sang-Hyuk;Hur, Nahm-Keon;Park, Hyoung-Joon;Ryu, Hea-Seong
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.3
    • /
    • pp.149-155
    • /
    • 2010
  • In the present study, the characteristics on the internal flow and heat transfer of the dimple-type plate heat exchanger were numerically investigated. For the numerical analysis, the conjugate heat transfer analysis between hot fluid-separating plate-cold fluid was performed using the periodic boundary condition at the center area of the plate and appropriate inlet and outlet conditions for the two streams. The numerical results were validated by the comparison with the experimental data. From these results, the correlations of the Colburn j-factor for the heat transfer and the Fanning f-factor for the flow friction were obtained. The present results could be applicable for the optimal design of dimple-type plate heat exchanger.

Performance Evaluation of Finned Tube Heat Exchanger with Vortex Generators in a Low Reynolds Number Regime (레이놀즈 수가 낮은 영역에서 와류발생기를 적용한 핀-관 열교환기 성능평가)

  • Kwak Kyung-Min;Song Gil-Dal
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.2
    • /
    • pp.151-157
    • /
    • 2006
  • The present paper reports the method for evaluation of heat-transfer performance of finned tube heat exchangers in a low Reynolds number regime (Re = $160\~800$) and also reports the data of heat transfer and pressure loss taken from a finned tube heat exchanger with/without vortex generators (VGs) installed as a heat-transfer enhancement device. The evaluation is based on the modified single blow method conducted in a specially designed low Reynolds number duct. Three different test core geometries, i.e., fin only, fin-tube without VGs and that with VGs, are studied here. The data of heat transfer and pressure loss taken from the fin only geometry agree well with the empirical correlations, thus validating the present method as used for low Reynolds number regime. The data taken from the finned tube geometries with and without VGs are presented and compared to examine the effect of VGs in the low Reynolds number regime.

Experimental Investigation on Flow Boiling of R-22 in a Alumium Extruded Tube (알루미늄 다채널 압출관 내 R-22 대류 비등에 관한 실험 연구)

  • Sim, Yong-Sup;Min, Chang-Keun;Lee, Eung-Ryul;Sin, Tae-Ryong;Kim, Nae-Hyun
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1340-1345
    • /
    • 2004
  • Convective boiling heat transfer coefficients of R-22 were obtained in a flat extruded aluminum tube with $D_h=1.41mm$ . The test range covered mass flux from 200 to 600 $kg/m^2s$, heat flux from 5 to 15 $kW/m^2$ and saturation temperature from $5^{\circ}C$ to $15^{\circ}C$ . The heat transfer coefficient curve shows a decreasing trend after a certain quality(critical quality). The critical quality decreases as the heat flux increases, and as the mass flux decreases. The early dryout at a high heat flux results in a unique 'cross-over' of the heat transfer coefficient curves. The heat transfer coefficient increases as the mass flux increases. At a low quality region, however, the effect of mass flux is not prominent. The heat transfer coefficient increases as the saturation temperature increases. The effect of saturation temperature, however, diminishes as the heat flux decreases. Both the Shah and the Kandlikar correlations underpredict the low mass flux and overpredict the high mass flux data.

  • PDF

Numerical Analysis for the Air-Side Convective Heat Transfer Characteristics in a Compact Heat Exchanger with Flat Tubes and Plate Fins According to the Aspect Ratio (종횡비에 따른 납작관-평판휜 형상의 밀집형 열교환기 내공기 측 대류열전달특성에 대한 수치해석)

  • Moh, Jeong-Hah
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.9
    • /
    • pp.695-703
    • /
    • 2008
  • Numerical analysis has been carried out to investigate air-side convective heat transfer characteristics in a compact heat exchanger with flat tubes and continuous plate fins according to the aspect ratio. RNG k-$\varepsilon$ model is applied for turbulence analysis. Simulation results such as air velocity and temperature distributions are presented, and heat transfer coefficients are compared with previous correlations for circular tubes. The numerical conditions are considered for the aspect ratios ranging from 3.06 to 5.44 and Reynolds number ranging from 1000 to 10,000. The results showed that heat transfer coefficients decreased with the increase of aspect ratio. From the calculated results a correlation of Colburn j factor for the considered aspect ratio in the compact heat exchanger system is suggested. The predicted results in this study can be applied to the optimal design of air conditioning system.

Measurement of Heat Transfer and Friction Coefficients for Flow of Air in Noncircular Ducts At High Surface Temperatures. (공기유동에 대한 고온상태의 비원형 도과내에서의 열전달 및 압력강하의 측정)

  • 이동렬
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.25 no.3
    • /
    • pp.552-562
    • /
    • 2001
  • Measurement of average of heat transfer and friction coefficients were obtained with air flowing through electrically heated ducts having square, rectangular(aspect ration, 5), and triangular cross section for range of surface temperature from $540^{\circ}$to $1780^{\circ}$ R and Reynolds number from 1000 to 330,000. The results indicates that the effect of heat flux on correlations of the average heat transfer and friction coefficients is similar to that obtained for circular tubes in previous investigation and was nearly eliminated by evaluating the physical properties and density of the air a film temperature halfway between the average surface and fluid bulk temperatures, With the Nusselt and Reynolds numbers on the hydraulic diameter of the ducts, the data for the noncircular ducts could be represented by the same equations obtained in the previous investigation for circular tubes. Correlation of the average difference between the surface corner and midwall temperatures for the square duct was in agreement with predicted values from a previous analysis. However, for the rectangular and triangular ducts, the measured corner temperature was greater by approximately 20 and 35 percent, respectively, than the values predicted by analysis.

  • PDF

Heat Transfer Performance of Evaporator Used in a Domestic Refrigerator/Freezer Under Frosting Condition (착상을 고려한 가정용 냉동/냉장고 증발기의 열전달 성능)

  • Lee Jang-Seok;Lee Kwan-Soo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.1
    • /
    • pp.62-70
    • /
    • 2005
  • In this study, the air-side heat transfer coefficients of several types of evaporators in the household freezer/refrigerators are investigated. The types considered in this work are: discrete flat plate fin-and-tube type(in-lined tube array), continuous flat plate fin-and-tube type(staggered tube array), and spine fin-and-tube type(in-lined tube array). The heat transfer correlations obtained from this study for each heat exchangers could expect heat transfer coefficients less than $5\%$ of errors. The result indicates that the air-side heat transfer performance of spine fin-and-tube type evaporator shows the highest value under dry conditions, but discrete flat plate fin-and-tube type evaporator shows the highest value among these three evaporators under frosting conditions.

Condensing Heat Transfer Characteristics of R-22 and R-134a in Small Diameter Tubes (세관내 R-22와 R-134a의 응축 전열 특성에 관한 연구)

  • Hong, Jin-U;No, Geon-Sang;Jeong, Jae-Cheon;O, Hu-Gyu
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.1
    • /
    • pp.54-61
    • /
    • 2001
  • Condensing heat transfer coefficients of R-22 and R-134a were measured in smooth, horizontal copper tubes with inner diameters of 1.77mm, 3.36mm, and 5.35mm, respectively. The experiments were conducted in the closed loop, which was driven by a magnetic gear pump. Data are presented for the following range of variables : mass velocity from 200 to 500kg/$m^2$.s and quality from 0 to 1.0. The heat transfer coefficients in the small diameter tubes (ID < 7mm) were observed to be strongly affected by various diameters and the heat transfer characteristics in the small diameter tubes differed from those in the large diameter tubes. Heat transfer coefficients in the small diameter tubes are higher than those in the large diameter tubes at the same experimental condition. It was found that some well-known previous correlations(Shahs correlation and Cavallini-Zecchins correlation) were not suitable for small diameter tubes.

Evaporation Heat Transfer Characteristics of Hydrocarbon Refrigerants R-290 and R-600a in the Horizontal Tubes

  • Roh, Geon-Sang;Son, Chang-Hyo;Oh, Hoo-Kyu
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.31 no.1
    • /
    • pp.74-83
    • /
    • 2007
  • This paper presents the experimental results of evaporation heat transfer coefficients of HC refrigerants (e.g. R290 and R600a). R-22 as a HCFCs refrigerant and R-l34a as a HFCs refrigerant in horizontal double pipe heat exchangers, having four different inner diameters of 10.07, 7.73, 6.54 and 5.80 mm respectively. The experiments of the evaporation process were conducted at mass flux of $35.5{\sim}210.4 kg/m^2s$ and cooling capacity of $0.95{\sim}10.1 kW$. The main results were summarized as follows : The average evaporation heat transfer coefficient of hydrocarbon refrigerants(R-290 and R-600a) was higher than the refrigerants, R-22 and R-l34a. In comparison with R-22 the evaporation heat transfer coefficient of R-l34a is approximately $-11{\sim}8.1 %$ higher. R-290 is $56.7{\sim}70.1 %$ higher and R-600a is $46.9{\sim}59.7 %$ higher. respectively. In comparison with experimental data and some correlations, the evaporation heat transfer coefficients are well predicted with the Kandlikar's correlation regardless of a type of refrigerants and tube diameters.

Development of a correlation on the convective heat transfer of supercritical pressure $CO_2$ vertically upward flowing in a circular tube (원형관에서 수직상향유동 초임계압 $CO_2$의 대류열전달 상관식 개발)

  • Kang, Deog-Ji;Kim, Hwan-Yeol;Bae, Yun-Young
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.292-295
    • /
    • 2008
  • In a SCWR (SuperCritical pressure Water cooled Reactor), the coolant temperature initially at below the pseudo-critical temperature at the bottom of a reactor core increases as the coolant flows upward through the sub-channels of the fuel assemblies, and it finally becomes higher than the pseudo-critical temperature when it leaves the reactor core. At certain conditions, heat transfer deterioration occurs near the pseudo-critical temperature and it may cause a drastic rise of the fuel surface temperature resulting a fuel failure. Therefore, an accurate estimation of the heat transfer coefficient is very important for the thermal-hydraulic design of a reactor core. An experiment on heat transfer to the vertically upward flowing $CO_2$ at a supercritical pressure in a circular tube were performed at KAERI. The internal diameter of the test section is 6.32 mm, which corresponds to the hydraulic diameter of a sub-channel in the conceptional design proposed by KAERI. The test range of the mass flux is 285 to 1200 kg/m$^2$s and the maximum heat flux is 170 kW/m$^2$. The inlet pressure is maintained at 8.12 MPa, which is 1.1 times the critical pressure. A new correlation, which covers both the normal and deterioration heat transfer regimes was proposed and compared with the estimations by exiting correlations.

  • PDF