• Title/Summary/Keyword: heat transaction

Search Result 4, Processing Time 0.018 seconds

A Study on the Optimal Bilateral Heat Transaction of CHP considering the Operation Modes (운전모드를 고려한 열병합발전의 열거래 최적운전)

  • Kim, Yong-Ha;Woo, Sung-Min;Back, Bum-Min;Lee, Pyong-Ho;Kim, Young-Gil
    • Journal of Energy Engineering
    • /
    • v.18 no.1
    • /
    • pp.37-48
    • /
    • 2009
  • Recently, the significance of Green-Energy led by low-carbon Green-Development is increasing as well in Korea. Among them, the most practical solution is the cogeneration which performs the best energy efficiency. This paper addresses the two of RCS(Regional Cogeneration System) connecting heat each other. It is conducted to quantitatively evaluate algorithm that optimally operate the heat transaction considering various operating modes. The proposed method is tested using the real system. Through the case studies, it is verified that the proposed algorithm of heat transaction can evaluate availability.

Development of Optimal Thermal Transfer Calculation Algorithm by Composition of Thermal Transfer Mechanism among Integrated Energy Operators (집단에너지 사업자간의 열연계 메커니즘 구성에 의한 최적 열연계 산정 알고리즘 개발)

  • Kim, Yongha;Kim, Seunghee;Hyeon, Seungyeon
    • Journal of Energy Engineering
    • /
    • v.26 no.4
    • /
    • pp.57-66
    • /
    • 2017
  • Since the heat is not as fast as the electric power and the loss is relatively large compared to the electric power, it is not realistic to operate the thermal transfer system with on operation center like electric power trading. In the case of the Korea District Heating Corporation, where all the thermal transfer are currently being made, only two or four adjacent heat-generating power plants are being the heat trading. Therefore, In this paper, we concluded that it is appropriate to divide the integrated operation center for heat trading into several regions, to operate the hub integrated operation power plant in each region to reflect the characteristics of the heat medium and proposed the thermal transfer mechanism among integrated energy operators. Then, we have developed an algorithm that can optimize the heat transaction for the proposed mechanism and applied it to the actual operators to verify the usefulness of the proposed algorithm.

Thermal Analysis of the Natural Convection Cooling Type Transformer

  • Oh Yeon-Ho;Song Ki-Dong;Sun Jong-Ho
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.5B no.2
    • /
    • pp.142-145
    • /
    • 2005
  • The life expectancy of a transformer largely depends on the temperature-rise it experiences. If the temperature-rise exceeds limits specified in the design standards, the aging of insulating materials is accelerated and the capability of the cooling medium is deteriorated. Consequently, applicable limits for the temperature-rise are essential in designing the transformer and the coolers, demanding the estimation of the transformer's thermal behavior. In order to analyze the temperature characteristics of the transformer, numerical analysis by way of the commercial CFD code has been carried out, and temperature-rise testing to verify computed results was performed. The results obtained in this study show that there is a good agreement between computed outcomes and experimental outcomes.

Computations of Losses and Temperatures in the Core Ends of a High Voltage Turbo-generator

  • Liu Yujing;Hjarne Stig
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.5B no.4
    • /
    • pp.299-305
    • /
    • 2005
  • The work described in this paper is to investigate the additional iron losses and consequent temperatures in core ends of a turbo-generator wound with high voltage cables. Electromagnetic calculations are made with 3D FE models, which include the lamination material with anisotropic properties both in magnetic permeability and electric conductivity. The models also include the geometry of the stator teeth and eventually the axial steps designated to reduce the core end losses. The 3D model of the rotor consists of field windings with straight in-slot parts and end windings. The thermal models are simplified into two dimensions and include the heat sources dumped from the 3D electromagnetic solutions. The influences of power factor on additional iron losses are studied for this cable wound machine and conventional machines. The calculation results show that the additional iron losses can be reduced to about $15\%$ by introducing some small steps around the airgap corner of core ends.