• Title/Summary/Keyword: heat tolerance

Search Result 235, Processing Time 0.035 seconds

Transgenic Expression of MsHsp23 Confers Enhanced Tolerance to Abiotic Stresses in Tall Fescue

  • Lee, Ki-Won;Choi, Gi-Jun;Kim, Ki-Yong;Ji, Hee-Jung;Park, Hyung-Soo;Kim, Yong-Goo;Lee, Byung-Hyun;Lee, Sang-Hoon
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.25 no.6
    • /
    • pp.818-823
    • /
    • 2012
  • Tall fescue (Festuca arundinacea Schreb.) is an important cool season forage plant that is not well suited to extreme heat, salts, or heavy metals. To develop transgenic tall fescue plants with enhanced tolerance to abiotic stress, we introduced an alfalfa Hsp23 gene expression vector construct through Agrobacterium-mediated transformation. Integration and expression of the transgene were confirmed by polymerase chain reaction, northern blot, and western blot analyses. Under normal growth conditions, there was no significant difference in the growth of the transgenic plants and the non-transgenic controls. However, when exposed to various stresses such as salt or arsenic, transgenic plants showed a significantly lower accumulation of hydrogen peroxide and thiobarbituric acid reactive substances than control plants. The reduced accumulation of thiobarbituric acid reactive substances indicates that the transgenic plants possessed a more efficient reactive oxygen species-scavenging system. We speculate that the high levels of MsHsp23 proteins in the transgenic plants protect leaves from oxidative damage through chaperon and antioxidant activities. These results suggest that MsHsp23 confers abiotic stress tolerance in transgenic tall fescue and may be useful in developing stress tolerance in other crops.

Increased Antioxidative Activities against Oxidative Stress in Saccharomyces cerevisiae KNU5377 (산화 스트레스 대한 Saccharomyces cerevisiae KNU5377의 항산화 활성의 증가)

  • Kim, Il-Sup;Yun, Hae-Sun;Yang, Ji-Young;Lee, Oh-Seok;Park, Heui-Dong;Jin, Ing-Nyol;Yoon, Ho-Sung
    • Journal of Life Science
    • /
    • v.19 no.4
    • /
    • pp.429-435
    • /
    • 2009
  • Oxidative stress is a consequence of an imbalance of the defense system against cellular damage generated by reactive oxygen species (ROSs) such as superoxide anions (menadione; MD). Most organisms have evolved a variety of defense systems to protect cells from adverse conditions. In order to evaluate stress tolerance against oxidative stress generating MD, comparative analyses of antioxidant capacity, or free radical scavenger ability, were performed between S. cerevisiae KNU5377 (KNU5377) and three wild-type S. cerevisiae strains. In a medium containing 0.4 mM MD, the KNU5377 strain showed higher cell viability and antioxidant ability, and contained higher levels of trehalose, superoxide dismutase, thioredoxin system, glucose-6-phosphate dehydrogenase, and some heat shock proteins. The KNU5377 strain also produced a lower level of oxidative stress biomarker than the other three yeast strains. These results indicate that S. cerevisiae KNU5377 has a higher level of tolerance to oxidative stress due to the increased expression of cell rescue proteins and molecules, thus alleviating cellular damage more efficiently than other S. cerevisiae strains.

Enhancement of the Chaperone Activity of Alkyl Hydroperoxide Reductase C from Pseudomonas aeruginosa PAO1 Resulting from a Point-Specific Mutation Confers Heat Tolerance in Escherichia coli

  • Lee, Jae Taek;Lee, Seung Sik;Mondal, Suvendu;Tripathi, Bhumi Nath;Kim, Siu;Lee, Keun Woo;Hong, Sung Hyun;Bai, Hyoung-Woo;Cho, Jae-Young;Chung, Byung Yeoup
    • Molecules and Cells
    • /
    • v.39 no.8
    • /
    • pp.594-602
    • /
    • 2016
  • Alkyl hydroperoxide reductase subunit C from Pseudomonas aeruginosa PAO1 (PaAhpC) is a member of the 2-Cys peroxiredoxin family. Here, we examined the peroxidase and molecular chaperone functions of PaAhpC using a site-directed mutagenesis approach by substitution of Ser and Thr residues with Cys at positions 78 and 105 located between two catalytic cysteines. Substitution of Ser with Cys at position 78 enhanced the chaperone activity of the mutant (S78C-PaAhpC) by approximately 9-fold compared with that of the wild-type protein (WT-PaAhpC). This increased activity may have been associated with the proportionate increase in the high-molecular-weight (HMW) fraction and enhanced hydrophobicity of S78C-PaAhpC. Homology modeling revealed that mutation of $Ser^{78}$ to $Cys^{78}$ resulted in a more compact decameric structure than that observed in WT-PaAhpC and decreased the atomic distance between the two neighboring sulfur atoms of $Cys^{78}$ in the dimer-dimer interface of S78C-PaAhpC, which could be responsible for the enhanced hydrophobic interaction at the dimer-dimer interface. Furthermore, complementation assays showed that S78C-PaAhpC exhibited greatly improved the heat tolerance, resulting in enhanced1 survival under thermal stress. Thus, addition of Cys at position 78 in PaAhpC modulated the functional shifting of this protein from a peroxidase to a chaperone.

A Geothermal Model of Pit Area Using Computational Fluid Dynamics (CFD를 이용한 피트의 지중열 모델 구축에 관한 연구)

  • Min, Joon Ki;Kim, Jeong Tai
    • KIEAE Journal
    • /
    • v.8 no.5
    • /
    • pp.11-16
    • /
    • 2008
  • This research has established CFD model on pit's cool-tube system through heat and air movement simulations, of which data was based on experimental and verification. This research work verified the effectiveness of the cool-tube system by analysing temperature, humidity and air current of the actually installed case. Also, we analysed heat transfer through air current simulation and the results are as followings. Firstly, we experiment on temperature, humidity and speed of air currents of the cool tube system with pit space during the month of May (spring). The average exterior temperature was $16.1^{\circ}C$, and $18.2^{\circ}C$ for the pit, $24.7^{\circ}C$ for the compressor room. Secondly, based on measured data of real case, we have analysed heat transfer through air current simulation and verified our proposed model. The actual measurement of average temperature of exhaust air of the pit's area is $19.7^{\circ}C$ with tolerance of $-0.33^{\circ}C{\sim}-0.6^{\circ}C$ compared to above simulations. Thirdly, having verified air current simulation model with formation of 260,000 and 1,000,000 cells, we could get reasonable near values with 260,000 cells. Lastly, the next step of research would be focused on proposing the best possible pit's cool-tube system after analysis of heat transfer of the air current simulation based on verified CFD model.

Rescue of Oxidative Stress by Molecular Chaperones in Yeast

  • Ueom Jeonghoon;Kang Sooim;Lee Kyunghee
    • Proceedings of the Microbiological Society of Korea Conference
    • /
    • 2002.10a
    • /
    • pp.76-78
    • /
    • 2002
  • Heat shock proteins (HSPs) are induced in most living cells by mild heat treatment, ethanol, heavy metal ions and hypoxia. In yeast Saccharomyces cerevisiae, mild heat pretreatment strongly induces Hsp104 and thus provide acquired thermotolerance. The ability of hsp104 deleted mutant $({\triangle}hsp104)$ to acquire tolerance to extreme temperature is severely impaired. In providing thermotolerance, two ATP binding domains are indispensible, as demonstrated in ClpA and ClpB proteases of E. coli. The mechanisms by which Hsp104 protects cells from severe heat stress are not yet completely elucidated. We have investigated regulation of mitochondrial metabolic pathways controlled by the functional Hsp104 protein using $^{13}C_NMR$ spectroscopy and observed that the turnover rate of TCA cycle was enhanced in the absence of Hsp104. Production of ROS, which are toxic to kill cells radiply via oxidative stress, was also examined by fluorescence assay. Mitochondrial dysfunction was manifested in increased ROS levels and higher sensitivity for oxidative stress in the absence of Hsp104 protein expressed. Finally, we have identified mitochondrial complex I and Ferritin as binding protein(s) of Hsp104 by yeast two hybrid experiment. Based on these observations, we suggest that Hsp104 protein functions as a protector of oxidative stress via either keeping mitochondrial integrity, direct binding to mitochonrial components or regulating metal-catalyzed redox chemistry.

  • PDF

Development of Controlled Gas Nitriding Furnace(II) : Controlled Gas Nitriding System and its Hardware (질화포텐셜 제어 가스질화로 개발(II) : 제어시스템 및 하드웨어)

  • Won-Beom Lee;Won-Beom Lee;YuJin Moon;BongSoo Kim
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.36 no.2
    • /
    • pp.86-95
    • /
    • 2023
  • This paper explained the equipment and process development to secure the source technology of controlled nitrification technology. The nitriding potential in the furnace was controlled only by adjusting the flow rate of ammonia gas introduced into the furnace. In addition, a control system was introduced to automate the nitriding process. The equipment's hardware was designed to enable controlled nitriding based on the conventional gas nitriding furnace, and an automation device was attached. As a result of measuring the temperature and quality uniformity for the equipment, the temperature and compound uniformity were ±1.2℃ and 14.3 ± 0.2 ㎛, respectively. And, it was confirmed that nitriding potential was controlled within the tolerance range of AMS2759-10B standard. In addition to parts for controlled nitriding, it was applied to products produced in existing conventional nitriding furnaces, and as a result, gas consumption was reduced by up to 80%.

Cloning and Characterization of dnaK Heat Shock Protein Gene in a Halotolerant Cyanobacterium (내염성 cyanobacteria로 부터 danK heat shock protein 유전자의 cloning 및 특성 해명)

  • ;;;Teruhiro Takabe
    • Journal of Life Science
    • /
    • v.11 no.5
    • /
    • pp.464-469
    • /
    • 2001
  • A gene, dnaK2, encoding a distinct member of the HSP70 family of molecular chaperones is isolated from the halotolerant cyanobactrium Aphanothece halophytica. The dnak2 gene encodes a molecular wight of 68 kDa polypeptide with predicted 616 amino acid residues. The DnaK2 protein has a structural characteristic of bacterial DnaK homologues and shows high similarity to other HSP70/Dank proteins. The danK2 transcripts are hardly detectable at 28$^{\circ}C$ and strongly induced upon heat stress. It is also found that dnaK2 transcript is increased by high-salinity stress even in the absence of heat stress. These results suggest that the DnaK2 protein plays an important role in protecting A. halophytica against damage caused by salt stress at well as heat stress.

  • PDF

Heat stress effects on the genetics of growth traits in Thai native chickens (Pradu Hang dum)

  • Wuttigrai Boonkum;Vibuntita Chankitisakul;Srinuan Kananit;Wootichai Kenchaiwong
    • Animal Bioscience
    • /
    • v.37 no.1
    • /
    • pp.16-27
    • /
    • 2024
  • Objective: The objective of this study was to investigate the effect of heat stress on the growth traits and genetic parameters of Thai native chickens. Methods: A total of 16,487 records for growth traits of Thai native chickens between 2017 and 2022 were used in this study. Data included the body weight at birth, body weight at 4, 8, and 12 weeks of age (BW0, BW4, BW8, BW12), average daily gain during 0 to 4, 4 to 8, and 8 to 12 weeks of age (ADG0-4, ADG4-8, ADG8-12), absolute growth rate at birth, at 4, 8, and 12 weeks of age (AGR0, AGR4, AGR8, AGR12). The repeatability test day model used the reaction-norm procedure to analyze the threshold point of heat stress, rate of decline of growth traits, and genetic parameters. Results: At temperature and humidity index (THI) of 76, Thai native chickens began to lose their growth traits, which was the onset of heat stress in this study. The estimated heritability, genetic correlation between animal and heat stress effect, and correlations between the intercept and slope of the permanent environmental effects were 0.27, -0.85, and -0.83 for BW, 0.17, -0.81, and -0.95 for ADG, 0.25, -0.61, and -0.83 for AGR, respectively. Male chickens are more affected by heat stress than female chickens with a greater reduction of BW, ADG, and AGR, values equal to -9.30, -0.23, -15.21 (in males) and -6.04, -0.21, -10.10 (in females) gram per 1 level increase of THI from the THI of 76. Conclusion: The influence of thermal stress had a strong effect on the decline in growth traits and genetic parameters in Thai native chickens. This study indicated that genetic models used in conjunction with THI data are an effective method for the analysis and assessment of the effects of heat stress on the growth traits and genetics of native chickens.

The Major Developments of the Evolving Reverse Osmosis Membranes and Ultrafiltration Membranes

  • Kurihara, Masaru
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1991.10a
    • /
    • pp.9-16
    • /
    • 1991
  • The current status of reverse osmosis and ultrafiltration membranes are reviewed with the view for the future. In the case of reverse osmosis (RO) membranes, as examples, new crosslinked aromatic polyamide membranes exhibited the superior separation performance with the sufficient water permeability, the high tolerance for oxidizing agents and chemicals. Ultrafiltration (UF) membrane based on poly(phenylene sulfide sulfone) (PPSS) also exibited the superior separation performance with the high solvent, heat and fouling resistance.

  • PDF